Remote Debugging with Networked Bus Analyzers

Total Page:16

File Type:pdf, Size:1020Kb

Remote Debugging with Networked Bus Analyzers Special ANALYZERS Remote debugging with networked bus analyzers By Leif Erik Laerum Remote debugging of VMEbus systems has in the past been unreliable and difficult. Now, new developments such as the inclusion of a network interface within VME bus analyzer technology have made remote analysis far easier and more reliable. This makes deploying test instruments into remote and inaccessible systems more achievable. Many innovations have been made in the VMEbus market dur- Some network security departments will view connection to the ing the last two years. The so-called VMEbus “renaissance” has analyzer over the Internet as making the whole system available developed new standards with new protocols and infrastructure over the Internet. This is a misconception if configured correctly; such as VITA 41 VXS. Some are completely new and others offer however, it may be tough to win this battle, especially since mak- backwards compatibility with existing systems. In addition, the ing a direct connection to a bus analyzer over the Internet requires time to market and development cycle have continued to shrink, the IT group to configure routers to allow IP forwarding and allo- demanding the test and development tool vendors to innovate. cate a public IP address. New developments within VME bus analyzer technology have Another easier method to connect over the Internet is that of uti- made remote analysis much easier and more reliable, which lizing a VPN tunnel. An example of this can be seen in Figure 1. makes deploying test instruments into remote and inaccessible The VPN tunnel provides a secure, encrypted connection between systems more achievable. Improvements in software, commu- two networks. This uses well-established means of communica- nication, and triggering make it easier for users to hone in on tions without jeopardizing security. There are numerous VPN trouble spots without being in the lab right next to the analyzer. protocols used today, and even small, inexpensive routers have support for one or more protocols. Establishing a remote connection To use a powerful bus analyzer tool while not actually being onsite opens up many possibilities for a system integrator or vendor. Placing a bus analyzer in systems delivered to the end customer in certain cases has proven to be a wise investment. This is especially true for field testing and trials of a new design or if the system is located in an area that is difficult to access. Shipping the bus analyzer to the location and installing it in a des- ignated analyzer slot provides the customer with faster response time. The service call may also be far less expensive. Often the end customer does not have the expertise on-site for debugging a problem. For a system integrator and hardware vendor, remote analysis means the engineering team will be able to troubleshoot the issue from any location. The key element making remote debugging possible is the pres- ence of the Ethernet interface on the bus analyzer. The analyzer Figure 1 can be connected to the same network as the other boards in the system as well as PCs, workstations, and switches. The analyzer has a full TCP/IP stack, making it capable of handling DHCP, Terminal server technology is also a way to remotely connect to fixed IP, and other common TCP/IP settings. In a situation where a system. The analyzer GUI application will then be executed on the analyzer is to be used in a local area network, it is easiest to the remote computer. The remote users will log on to the remote use the IP address assigned by the DHCP server. computer from their office using the company’s existing security protocols. To access the analyzer with a WAN approach from the other side of a router, a fixed IP address is better since the address of the Another way to connect to the analyzer is via USB. USB lim- analyzer will not change. If using a fixed IP on a network with a its the connection length to five meters. However, USB provides DHCP server, the analyzer IP address should be reserved to avoid an extremely easy way of connecting a laptop to a bus analyzer conflicts. Remote debugging also includes situations where the already installed in the system. In the lab where network connec- lab is located in another building or floor where there are differ- tivity to the analyzer has a security impact, USB provides a fast ent subnets and networks. and efficient way of communicating with the analyzer. Reprinted from VMEbus Systems / October 2005 Copyright 2005 Special ANALYZERS Although our discussion focuses on the use of bus analyzers, a The analyzer’s power supply voltage monitor continuously reports remote connection to a system also allows remote software debug- the status of the voltages in the system. Alarm thresholds can be ging and upgrading as part of the debugging and repair process. set to report if the voltage is outside a specified range. Figure 2 demonstrates an example of the 5 V supply dropping below the Sharing the bus analyzer user-defined level of 4.80 V. Similarly, temperature measurements There are Web-based services available that allow remote users to can be obtained using a probe attached to the analyzer via a cable. see the screen of an analyzer at the local site. These services are Systems never have uniform temperature throughout so the tem- extremely easy to use and secure and will work on any network perature sensor (“Ext Temp” in Figure 2) can be placed anywhere with http Internet access. Users connected to the analyzer can use in the system for monitoring a particular critical area. The “Brd either USB or Ethernet. They then share the analyzer GUI and Temp” indicator is the temperature of the VMEbus analyzer itself. any other application windows to a website that the engineering team can see as well. Effectively, this will bring the entire engi- neering team to the remote site as well as any third party vendor. Engineers familiar with the system will recognize the source of the problem far quicker when they are able to see the screens, error messages, and live data. Users can configure the analyzer setup with their settings. The Figure 2 GUI implements a workspace allowing each user to save settings and link all analyzer setups and saved data files. When the work- space is saved, it will open the same set of files next time. The user To control a system remotely, the most obvious method is to does not have to reconfigure the analyzer hardware from the previ- build and utilize software and network applications. However, ous user’s settings, thus enabling easy analyzer tool sharing. the VME analyzer can provide a redundant control unit that does not rely on a functional system. One example is the ability to Analysis can also be done offline once a trace file or performance reboot a malfunctioning system by asserting SYSRESET from log is saved. In situations where users have a specific time slot to an analyzer GUI. Using the bus analyzer to assert SYSRESET is debug their part of the system, offline trace viewing makes for identical to pushing the front panel reset button on the slot one more efficient use of the analyzer tool. Users collect trace, log, controller. The analyzer does not have to be in a system controller and performance data during their time slot and view the results slot to perform this function. back in the office. In a remote debugging situation, users can col- lect data from the remote site and bring the files back to the engi- The VMEbus analyzer also has I/O pins that can be toggled from neering team for analysis. The results can also be e-mailed from the GUI. These can be connected to other signals elsewhere in the remote site to the engineering headquarters or third party ven- the system. If a particular device in the system needs to be reset, dors for consultation. all that’s required is to run a wire from the analyzer header to the unit’s reset circuitry. These pins are controlled by the Exerciser Downloading data from the analyzer User Interface and can also be part of Exerciser scripts. Using Ethernet facilitates faster trace buffer download time from the analyzer to the computer than was previously available. Performance monitoring Downloading trace files and other data from the analyzer is not A bus analyzer also offers performance monitoring in a remote something that the user has to wait for like in the past. The ana- setting. This can be used as an early warning system of problems lyzer downloads data around the trigger point first. Thus, the user to come and hopefully reduce or prevent the cost of such a fail- can start viewing the result immediately, while the remainder of ure. The system architect can define real-time monitoring of cer- the trace data is downloaded in the background. Once the user has tain indicators. Statistics gathered and saved prior to deployment determined that the trace results are worth keeping, the tempo- can be used to compare to the deployed situation by replaying rary file can be saved with no download time. The networked bus saved results. analyzers offer user-scalable buffer sizes, reducing the download time even further. In most situations, the activity of interest is The most important VMEbus metrics are Bus Transfer Rate and found among the 1,000 samples before or after the trigger. Bus Utilization. Figure 3 shows a measurement taken in an exam- ple system. The utilization is measured to be 9.2 percent with System monitoring and control a max of 22.6 percent.
Recommended publications
  • Securing Embedded Systems: Analyses of Modern Automotive Systems and Enabling Near-Real Time Dynamic Analysis
    Securing Embedded Systems: Analyses of Modern Automotive Systems and Enabling Near-Real Time Dynamic Analysis Karl Koscher A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Tadayoshi Kohno, Chair Gaetano Borriello Shwetak Patel Program Authorized to Offer Degree: Computer Science and Engineering © Copyright 2014 Karl Koscher University of Washington Abstract Securing Embedded Systems: From Analyses of Modern Automotive Systems to Enabling Dynamic Analysis Karl Koscher Chair of the Supervisory Committee: Associate Professor Tadayoshi Kohno Department of Computer Science and Engineering Today, our life is pervaded by computer systems embedded inside everyday products. These embedded systems are found in everything from cars to microwave ovens. These systems are becoming increasingly sophisticated and interconnected, both to each other and to the Internet. Unfortunately, it appears that the security implications of this complexity and connectivity have mostly been overlooked, even though ignoring security could have disastrous consequences; since embedded systems control much of our environment, compromised systems could be used to inflict physical harm. This work presents an analysis of security issues in embedded systems, including a comprehensive security analysis of modern automotive systems. We hypothesize that dynamic analysis tools would quickly discover many of the vulnerabilities we found. However, as we will discuss, there
    [Show full text]
  • LXI Devices - List of Conformant Products
    August 31, 2010 LXI Devices - List of Conformant Products Vendor Category Product Class Approval Date Members No Description A B C plus N6700B Power Supply 400W Agilent Power Supplies N67xx N6701A 600 W x N6702A 3 1200 W Dec 5, 2005 N5741A - 12 Power Supply Models N5752A 600 W … 780 W Agilent Power Supplies N57xx x N5761A - 12 Power Supply Models N5772A 24 1080 W ...1560 W Dec 5, 2005 60-100 7 slot version Pickering Switching 60-100 x 60-101 2 13 slot version Dec 12, 2005 34410 Agilent DMM 3441x 6½ Digit Multimeter x 34411 2 Dec 19, 2005 Multifunction Agilent 34980 34980 x Mainframes 1 Switch/Measure Unit Dec 19, 2005 AMETEK Programmable Power Supplies DCS DCS 1k x Power 12 Power Supplies 1kW Jan 23, 2006 AMETEK Programmable Power Supplies DCS DCS 1.2k x Power 11 Power Supplies 1.2 kW Jan 23, 2006 AMETEK Programmable Power Supplies DCS DCS 3k x Power 8 Power Supplies 3 kW Jan 23, 2006 AMETEK DLM 5-75 - Programmable Power Supplies DLM DC Power Supplies 600 W x DLM 300-2 Power 9 Jan 23, 2006 Agilent SI - IF Digitizer N8221 N8221A 1 30MSa/s IF Digitizer x Jan 23, 2006 Agilent SI - Downconverter N8201 N8201A 1 Performance Downconverter x Jan 23, 2006 N8241A 15-bit Arbitray Waveform Gen Agilent SI - Function / AWG N824xx x N8242A 2 10-bit Arbitrary Wavform Gen Jan 23, 2006 N8211A Analog Upconverter Agilent SI - Upconverter N821xx x N8212A 2 Vector Upconverter Jan 23, 2006 2910-F 2910-FRK Keithley Signal Generators 2910 RF Vector Signal Generator x 2910-RRK 2910-R 4 Feb 15, 2006 FSQ3 Signal Analyzer 3 GHz FSQ8 8 GHz Rohde & Schwarz Signal Analyzer
    [Show full text]
  • The General Purpose Interface Bus
    University of Central Florida STARS Retrospective Theses and Dissertations Winter 1980 The General Purpose Interface Bus Ernest D. Baker University of Central Florida Part of the Engineering Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Baker, Ernest D., "The General Purpose Interface Bus" (1980). Retrospective Theses and Dissertations. 462. https://stars.library.ucf.edu/rtd/462 THE GENERAL PURPOSE INTERFACE BUS BY ERNEST D. BAKER B.S.E., Florida Technological University, 1975 . ...... RESEARCH REPORT Submitted in partial fulfillment of the requirements for the degree of ·Master of Science in Engineering in the Graduate Studies Program of the College of Engineering of the University of Central Florida at Orlando, Florida Winter Quarter 1980 THE GENERAL PURPOSE INTERFACE BUS BY ERNEST D. BAKER ABSTRAC+ The General Purpose Interface Bus, as defined by the ~EE~ Stcndard , deals with systems that require digital data to be transferred between a group of instruments. An overview of this standard is presented which summarizes the interface's capabilities, functions and versatility by explaining the b.asic interface concepts. In addition, a GPI.S testing application and a GPIB related design example are presented and i.nvesti- gated. ~~Herbert C. Towle, Chairm2n · ACKNOWLEDGEMENTS It is with d£ep adoration and appreciation that the author wishes to thank the committee members and those advisors whose patience and understanding provided an avenue for the satisfactory completion of this research report.
    [Show full text]
  • Handyscope HS5, an Unbeatable High Resolution Oscilloscope
    TiePie engineering Handyscope HS5, an unbeatable High Resolution oscilloscope Handyscope HS5 The world's best 500 MHz, 14 bit USB oscilloscope 30 MHz Arbitrary Waveform Generator Data Sheet Oscilloscope / Spectrum analyzer / Multimeter / Data logger 14 bit (0.006 %) resolution (16 bit enhanced resolution) 500 MS/s sampling 250 MHz bandwidth 32 MSamples memory per channel 20 MS/s continuous streaming 0.25 % DC vertical accuracy 1 ppm timebase accuracy USB powered Arbitrary Waveform Generator 1 µHz to 30 MHz sine, square, triangular and arbitrary waves 240 MS/s, 14 bit, 64 MSamples arbitrary waves 0 to ± 12 Volt output (24 Vpp) 1 ppm timebase accuracy Spurious (non harmonic) <-75 dB 8 ns rise and fall time Handyscope HS5, an unbeatable High Resolution USB oscilloscope Handyscope HS5, an unbeatable oscilloscope This Best in class USB oscilloscope has: • 14 and 16 bit High Resolution USB Oscilloscope, 256 times more amplitude resolution than an 8 bit oscilloscope, with super zoom up to 32 Million samples • 250 MHz USB Spectrum analyzer • High Performance Digital Multimeter (DMM) • Protocol analyzer • USB Arbitrary Waveform Generator and gives the best that is available in industry, for a limited budget. The flexibility and quality that the Handyscope HS5 offers is unparalleled by any other oscilloscope in its class. Models The Handyscope HS5 is available in four different models with an extended memory option. Handyscope HS5 model 530 230 110 055 Maximum sampling rate 500 MS/s 200 MS/s 100 MS/s 50 MS/s Maximum streaming rate 20 MS/s 10 MS/s 5 MS/s 2 MS/s standard model 128 KiS 128 KiS 128 KiS 128 KiS Record length per channel XM option 32 MiS 32 MiS 32 MiS 32 MiS Maximum AWG frequency 30 MHz 30 MHz 10 MHz 5 MHz standard model 256 KiS 256 KiS 256 KiS 256 KiS AWG memory XM option 64 MiS 64 MiS 64 MiS 64 MiS More instruments in the smallest package.
    [Show full text]
  • Serial Data Compliance and Validation Measurements
    Presented by TestEquity - www.TestEquity.com The Basics of Serial Data Compliance and Validation Measurements Primer Primer 2 www.tektronix.com/serial_data The Basics of Serial Data Compliance and Validation Measurements Table of Contents Serial Buses - An Established Compliance Testing Solutions . .13 - 19 Design Standard . .4 Connectivity . .13 TriMode™ Differential Probes . .14 A Range of Serial Standards . .4 - 9 Pseudo-differentially Connected SATA/SAS . .4 Moveable Probes . .14 ® PCI Express . .6 SMA Pseudo-differentially Connected Probes . .15 Ethernet . .6 True Differential Moveable Probes . .15 USB . .7 SMA True Differential Probes . .15 HDMI/DisplayPort . .7 Fixtures . .16 Common Architectural Elements . .8 Pattern Generation . .16 Differential Transmission . .8 Receiver Sensitivity Testing . .17 8b/10b Signal Encoding . .8 The Test Process . .17 Embedded Clocks . .8 Seeing Inside the Receiver . .18 De-Emphasis . .9 Receiver Amplitude Sensitivity Measurements . .18 Low Voltage Signaling . .9 Receiver Timing Measurements . .18 Next-generational Serial Challenges . .10 Receiver Jitter Tolerance Measurements . .19 Gigabit Speeds . .10 Signal Acquisition . .19 - 21 Jitter . .10 Bandwidth Requirements . .19 Transmission Line Effects . .10 Bandwidth and Transitions . .20 Noise . .10 Acquiring From Multiple Lanes . .20 Sample Rate and Record Length . .21 Compliance Testing . .10 - 13 Eye Measurements . .11 Signal Analysis . .21 - 26 Amplitude Tests . .11 Real-time or Equivalent-time Oscilloscopes . .21 Timing Tests . .12 Eye Analysis
    [Show full text]
  • Quality Service Selection Phone: 1- 303 -438 -9662 530 Compton St., Unit #C Fax : 1- 303 -438 -9685 Broomfield, CO 80020
    Quality Service Selection Phone: 1- 303 -438 -9662 530 Compton St., Unit #C Fax : 1- 303 -438 -9685 Broomfield, CO 80020 ACME PS2L -1000 $450.00 EIP928opt.9201 Programmable $4,000.00 OSCILLOSCOPES & ACCESSORIES 0.75 V/ 0-150 Al 1000 Watt Load Sweep Gen.,1 -18 GHz HP 59501A HPIB Power Supply Programmer $175.00 HP 86200 Sweep Oscillator Frame $550.00 TEK 5B1)N 2 MHz Time Base. for 5100 series ... __. $100.00 HP 6827A Bipolar Supply/Amp, 100 V 500 mA $800.00 HP 8620Copt011 Sweep Oscillator $675.00 TEK 7603 100 MHz 3-slot frame $250.00 KIKUSUI PU-72W Prop. Load, $200.00 Frame, HPIB TEK7A13 100 MHz Differential Comparator _.. $450.00 4- 110Vß12A/70W HP 86222A RF Plug -In, 10 -2400 MHz $1,400.00 TEK 7853A 100 MHz Dual Time Base $ 200.00 HP 86222Bopt.2 RF Plug -in, $1,950.00 TEK R7603 Rsckmount 100 MHz $200.00 TIME & FREQUENCY 10-2400 MHz, often. O'scope frame HP 86290B RF Plug -in, 2.0 -18.8 GHz, $2,000.00 TEK SC502 15 MHz Dual Trace $375.00 HP 5315A 100 MHz/100 nS Universal Counter $550.00 NOdBm O'soope, 1M500 HP 5316A 100 MHz/100 nS Univ. Count, HPIB $750.00 WAVETEK 1067 Sweep Gen $500.00 TEK 7904 500 MHz 4 -slot frame $500.00 HP 5318A-003 100 MHz/100 nS UNv $850.00 10-2400 MHz, aSen. TEK 7904. Systemw/7A24,7A26,7B80,7B85 $1,200.00 1.3 GHz ch BOONTON 428/41-48 Power Meter, $475.00 TEK 7A24 400 MHz Dual Trace Amplifier $450.00 HP 5370B-001 Time Interval CounkK b20 p8 $2,250.00 1 MHz -12.4 GHz TEK 7A26200 MHz Dual Trace Amplifier $250.00 HP E1420A- 10,30VXI Counter, $1,500.00 BOONTON 42B/41-4E Power Meter, $650.00 TEK 7A29 1 GHz Single Channel Amplifier $850.00 200 MHz 8 2.5 GHz 1 MHz -16 GHz TEK 78101 GHz Time Base $ 500.00 TEK 7015225 MHz Universal CounterTmer $275.00 BOONTON 428/42.3/3 Power Meter, $375.00 TEK 71315 1 GHz Delaying Time Base $600.00 TEK 005009 Programmable $750.00 1 MHz-8 GHz TEK 7880 400 MHz Delayed Time Base $200.00 135 MHz Count/Timer HP 432N478A Power Meter.
    [Show full text]
  • Picoscope 6 User's Guide I Table of Contents 1 Welcome
    PicoScope 6 PC Oscilloscope Software User's Guide psw.en r39 Copyright © 2007-2015 Pico Technology Ltd. All rights reserved. PicoScope 6 User's Guide I Table of Contents 1 Welcome ....................................................................................................................................1 2 PicoScope 6....................................................................................................................................2 overview 3 Introduction....................................................................................................................................3 1 Leg al........................................................................................................................................3 statement 2 Upg rades........................................................................................................................................3 3 Trade........................................................................................................................................4 marks 4 System........................................................................................................................................4 requirements 4 Using PicoScope....................................................................................................................................5 for the first time 5 PicoScope and....................................................................................................................................6 oscilloscope
    [Show full text]
  • Каталог Компании Yokogawa 2010
    ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com MiItt All P d t G id A Measuring Instruments All Products P Guide G Vol. 11Bulletin 00A02B02-60E ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com Pick-upPick-up P Proroductsducts Mixed Signal OscilloscopesDigital Oscilloscopes Mixed Signal Oscilloscopes Vihicle Serial Bus Analyzer DL9000 Series MSO Models DL9000 Series DLM2000 Series SB5000 NEW p4 p5 p7 p12 Precision Power Analyzer Digital Power Analyzer OpticalHigh-Speed Pow erData Meter Acquisition Unit Optical Spectrum Analyzer WT3000WT500 NEW SL1000 AQ6370B/AQ6375 NEW NEW p17 p19 p24 p28, 29 Optical Time Domain Reflectmeter GS Series Accessory Software Transport Analyzer Data Acquisition Unit DAQMASTER AQ7275 765670 NX4000 MW100 NEW NEW NEW MX100 Upgrade p32 p38 p39 p48 MVAdvanced DXAdvanced For Green Series Controllers Data Acquisition Software Suite MV1000 DX1000 PC-Based Parameter Setting Tool DAQWORX LL100/LL200/LL1100/LL1200 MV2000 DX2000 Upgrade Upgrade Upgrade USB Support for connection Windows Vista available p51 p55 p62 p65 Data LoggerApplication Software for Datum-Y Handy Calibrator Digital Multimeter Datum-Y XL120Datum-Logger XL900 CA150 TY700 Series NEW Upgrade TY500 Series p66 p66 p68 p70 ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com Measuring Instruments All Products Guide Vol.11 Contents Oscilloscopes Oscilloscopes Recorders Digital and Mixed Signal Oscilloscopes Selection Guide.....................2 Recorders Selection Guide................................................................46
    [Show full text]
  • User Guide with the Maximum Permissible Gain and Required Antenna Impedance for Each Antenna Type Indicated
    DS90UH948-Q1EVM User's Guide User's Guide Literature Number: SNLU165 October 2014 Contents 1 DS90UH948-Q1EVM User's Guide .......................................................................................... 5 1.1 General Description ......................................................................................................... 5 1.2 Features....................................................................................................................... 5 1.3 System Requirements....................................................................................................... 6 1.4 Contents of the Demo Evaluation Kit ..................................................................................... 6 1.5 Applications Diagram........................................................................................................ 6 1.6 Typical Configuration ........................................................................................................ 7 1.7 Quick Start Guide............................................................................................................ 8 1.8 Demo Board Connections .................................................................................................. 9 1.9 ALP Software Setup ....................................................................................................... 12 1.9.1 System Requirements ............................................................................................ 12 1.9.2 Download Contents ..............................................................................................
    [Show full text]
  • 107-C/307-C Advanced Testing Technologies, Inc
    107-C/307-C Advanced Testing Technologies, Inc. 012 Rev B 7-24-19 ® The BRAT 107-C and 307-C Test Systems (Available Through GSA) 107-CPart Number Description Quantity 307-C Part Number Description Quantity 94001249-01 5 GS/s Digital Phospher 94000887-01 DC Power Supply Frame 2 Oscilloscope 1 94000888-01 0 to 7 V Module for DC 93000506-01 32-Channel, 5 A, Form C Power Supply 2 Switch 1 94000889-01 0 to 20 V Module for DC Power Supply 2 92103855-05 Synchro/Resolver Simulator and Indicator 1 94000890-01 0 to 32 V Module for DC Power Supply 2 04000067-01 Serial Bus Analyzer/Simulator 1 95000043-01 0 to 40 V Module for DC 04000009-10 Rack Mount Computer 1 Power Supply 3 Power 95000045-01 0 to 160 V Module for DC 93000550-50 Three-Phase AC Programmable Power Supply 1 Power Supply with Power 94000891-01 0 to 320 V Module for DC Factor Correction 1 Power Supply 1 94100500-30 Electronic Power Control 94000887-01 DC Power Supply Frame 2 Center - BRAT® 1 94000888-01 0 to 7 V Module for DC 92103974-10 Electronic Load Kit 1 BRAT® 107-C Test System BRAT® 307-C Test System Power Supply 2 96000020-01 Programmable Electronic Load 1 94000889-01 0 to 20 V Module for DC The 107-C Test System is Functionally Equivalent The 307-C Test System is Functionally Equivalent RF Rack Power Supply 2 to the B105-A with Expanded Functionality to the B305B-A with Expanded Functionality 94100500-230 Electronic Power Control Center 1 94000890-01 0 to 32 V Module for DC Part Number Description Quantity Power Supply 2 Part Number Description Quantity RFIU Modules 94000605-30
    [Show full text]
  • Intel® Quartus® Prime Pro Edition User Guide Debug Tools
    Intel® Quartus® Prime Pro Edition User Guide Debug Tools Updated for Intel® Quartus® Prime Design Suite: 18.0 Subscribe UG-20139 | 2018.07.03 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. System Debugging Tools Overview................................................................................. 7 1.1. System Debugging Tools Portfolio............................................................................ 7 1.1.1. System Debugging Tools Comparison........................................................... 7 1.1.2. Suggested Tools for Common Debugging Requirements.................................. 8 1.1.3. Debugging Ecosystem................................................................................ 9 1.2. Tools for Monitoring RTL Nodes.............................................................................. 10 1.2.1. Resource Usage....................................................................................... 10 1.2.2. Pin Usage............................................................................................... 12 1.2.3. Usability Enhancements............................................................................ 12 1.3. Stimulus-Capable Tools.........................................................................................13 1.3.1. In-System Sources and Probes.................................................................. 13 1.3.2. In-System Memory Content Editor..............................................................14 1.3.3. System Console.......................................................................................14
    [Show full text]
  • Event and Time-Triggered Control Module Layers for Individual Robot
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering--Dissertations, Biological Systems Engineering Theses, and Student Research 10-2017 Event and Time-Triggered Control Module Layers for Individual Robot Control Architectures of Unmanned Agricultural Ground Vehicles Tyler Troyer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biosysengdiss Part of the Bioresource and Agricultural Engineering Commons, Controls and Control Theory Commons, Digital Communications and Networking Commons, Electrical and Electronics Commons, Hardware Systems Commons, and the Robotics Commons Troyer, Tyler, "Event and Time-Triggered Control Module Layers for Individual Robot Control Architectures of Unmanned Agricultural Ground Vehicles" (2017). Biological Systems Engineering--Dissertations, Theses, and Student Research. 73. http://digitalcommons.unl.edu/biosysengdiss/73 This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering--Dissertations, Theses, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EVENT AND TIME-TRIGGERED CONTROL MODULE LAYERS FOR INDIVIDUAL ROBOT CONTROL ARCHITECTURES OF UNMANNED AGRICULTURAL GROUND VEHICLES by Tyler Alan Troyer A THESIS Presented to the Faculty of The Graduate College of the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Agricultural and Biological Systems Engineering Under the Supervision of Professor Santosh K. Pitla Lincoln, Nebraska October, 2017 EVENT AND TIME-TRIGGERED CONTROL MODULE LAYERS FOR INDIVIDUAL ROBOT CONTROL ARCHITECTURES OF UNMANNED AGRICULTURAL GROUND VEHICLES Tyler Alan Troyer, M.S. University of Nebraska, 2017 Advisor: Santosh K.
    [Show full text]