R-- C23c I6/40 (2006.01) H R8 O R3| W"Ch (52) U.S

Total Page:16

File Type:pdf, Size:1020Kb

R-- C23c I6/40 (2006.01) H R8 O R3| W USOO80O3814B2 (12) United States Patent (10) Patent No.: US 8,003,814 B2 Wada et al. (45) Date of Patent: Aug. 23, 2011 (54) METALALKOXIDE COMPOUND, MATERIAL JP 6-60406 8, 1994 FOR FORMING THIN FILM, AND METHOD E. 39: 33: FOR PRODUCING THIN FILM JP 2002-93804 3, 2002 JP 2005-340405 12/2005 (75) Inventors: Senji Wada, Tokyo (JP); Tetsuji Abe, JP 2006-182709 T 2006 Tokyo (JP); Atsushi Sakurai, Tokyo KR 100156980 B1 7, 1998 (JP); Takashi Higashino, Tokyo (JP); Ryusaku Fujimoto, Tokyo (JP); OTHER PUBLICATIONS Masako Shimizu, Tokyo (JP) S.C. Goeletal.—Methyl Butenoxy Derivatives of Various Elements, Z. anorg. allg. Chem. 447, pp. 253-256, Dec. 31, 1978. (73) Assignee: Adeka Corporation, Tokyo (JP) Chinese Official Action 200710152709.3–Apr. 26, 2011. (*) Notice: Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 U.S.C. 154(b) by 1014 days. Primary Examiner — Porfirio Nazario Gonzalez (21) Appl. No.: 11/854,109 (74) Attorney, Agent, or Firm — Young & Thompson (22) Filed: Sep. 12, 2007 (57) ABSTRACT (65) Prior Publication Data A metal alkoxide compound represented by the following US 2008/O187662 A1 Aug. 7, 2008 general formula (1), (30) Foreign Application Priority Data (1) Sep. 15, 2006 (JP) ................................. 2006-251575 HC Sc (51) Int. Cl. C07F 7/00 (2006.01) R-- C23C I6/40 (2006.01) H R8 O R3| W"CH (52) U.S. Cl. ......................................... 556/54; 106/1.25 C-C-O-M-O-C-C (58) Field of Classification Search .................... 556/54; A | H 106/1.25 HC R7 O R4 See application file for complete search history. R-- (56) References Cited HC Sch, U.S. PATENT DOCUMENTS 2,684.972 A * 7/1954 Haslam ........................... 556/54 2007/O190249 A1 8, 2007 Hosokawa et al. wherein each of R' to R is independently ahydrogenatom or a methyl group; M is a titanium, a Zirconium or a hafnium FOREIGN PATENT DOCUMENTS atOm. JP 60-258132 12/1985 JP O1-172390 7, 1989 JP 5-2396.50 9, 1993 6 Claims, 4 Drawing Sheets U.S. Patent Aug. 23, 2011 Sheet 1 of 4 US 8,003,814 B2 FIG. P U.S. Patent Aug. 23, 2011 Sheet 2 of 4 US 8,003,814 B2 F.G.2 s 600 5.75 550 525 500 475 45 40 135 1.30 f U.S. Patent Aug. 23, 2011 Sheet 3 of 4 US 8,003,814 B2 FG.3 8 H Tetrakis (ethylmethylamino)zirconium Compound No.9 AO 10) 20 300 4. 500 SO Temperature (C) FIG.4 Tetrakis(ethylmethylaminohafnium Compound No.15 . I-1, - t-sis- Tetrakis(tert-butoxy) hafnium CO 200 3OO 400 500 600 Temperature ("C) U.S. Patent Aug. 23, 2011 Sheet 4 of 4 US 8,003,814 B2 PIG.5 se- Purge gas re- Reactive gas Material container s Exhat St Automatic pressure controller WacuumC pimp Cooling trap US 8,003,814 B2 1. 2 METALALKOXIDE COMPOUND, MATERIAL Tetrakis-dialkylamide compounds have problems in ther FOR FORMING THIN FILM, AND METHOD mal stability, and have a disadvantage in stable production of FOR PRODUCING THIN FILM thin films. Further, tetrakis-alkoxide compounds are not suf ficiently decomposed on thin film deposition, and have prob BACKGROUND OF THE INVENTION lems in productivity. 1. Field of the Invention SUMMARY OF THE INVENTION The present invention relates to a metal alkoxide com An object of the present invention is to allow, in a thin film pound having a novel specific structure, a material for form production process involving a vaporization step, the precur ing a thin film containing the compound, and a method for 10 Sor that Supplies titanium, Zirconium and hafnium to a thin producing a thin film using the material. film to have favorable decomposition properties by heat and/ 2. Description of the Related Art or oxidation, thermal stability, vapor pressure and others that A thin film that contains titanium, Zirconium or hafnium is meet the requirements needed as a material for forming thin used as an electronic member for electronic components such films, particularly as a material for CVD. as high-dielectric capacitors, ferroelectric capacitors, gate 15 As a result of intensive studies, the present inventors found insulating films and barrier films, or an optical member for that the above problems were resolved by a metal alkoxide optical communication devices such as optical wave guides, compound having a specific structure, and completed the optical Switches, and optical amplifiers. present invention. As a method for producing the above thin film, there may Namely, the present invention has achieved the above be mentioned flame deposition, sputtering, ion plating, MOD objective by providing a metal alkoxide compound repre Such as coating thermal decomposition and sol-gel processes, sented by the following general formula (1). chemical vapor deposition, or the like. Among these, chemi cal vapor deposition (hereinafter, may be simply referred to as “CVD) including Atomic Layer Deposition (ALD) is an (1) appropriate production process, because of its many advan 25 H2CsSo tages including excellent properties in composition control and step coverage, Suitability for mass production, capability of providing hybrid integration, and the like. R8 O R3 CH In the CVD process, a metal compound having organic H A ligands is used as a precursor Supplying metal atoms Source 30 C-C-O-M-O-C-C for a thin film. A compound (precursor) suitable for materials A | H used in CVD is required to have such properties as being HC R7 O R transportable in a liquid state upon vaporization and at trans portation, having a high vapor pressure and being easy to R-- evaporate, and being stable against heat. In addition, upon 35 HC thin film deposition, the decomposition is easily progressed Sch, by thermal and/or chemical reaction. As the precursors of titanium, Zirconium and hafnium, tetrakis-dialkylamide com wherein each of R' to R is independently a hydrogenatom pounds and tetrakis-alkoxide compounds have been exam or a methyl group; M is a titanium, a Zirconium or a hafnium ined. 40 atOm. Patent Documents 1 to 4 disclose tetrakis-amide com Further, the present invention has achieved the above pounds. Patent Documents 5 to 7 disclose tetrakis-alkoxide objective by providing a material for forming a thin film that compounds. Patent Document 8 discloses tetrakis-amide contains the above metal alkoxide compound. compounds, tetrakis-alkoxide compounds and the like. Fur Still further, the present invention has achieved the above ther, in claim 1 of Patent Document 9, a metal alkoxide 45 objective by providing a method for producing a thin film, compound represented by M(OR") (R' is an alkyl group or wherein the vapor that is obtained by vaporizing the above alkenyl group that has 2 to 21 carbon atoms and may be materials for forming a thin film and contains the metal alkox branched; and M is Zirconium, hafnium or titanium) is dis ide compound is introduced over a Substrate; and the vapor is closed. However, regarding the alkenyl group, no specific decomposed and/or chemically reacted so as to deposit a thin structure is disclosed. 50 film on the substrate. Patent Document 1: Japanese Patent Laid-Open Publica Still further, the present invention has achieved the above tion No. 2002-93803 objective by providing a thin film that is deposited on a Patent Document 2: Japanese Patent Laid-Open Publica Substrate by using the above method for producing a thin film. tion No. 2002-93804. The metal alkoxide compound of the present invention Patent Document 3: Korean Patent No. 156980 55 allows, in a thin film production process involving a vapor Patent Document 4: Japanese Patent Laid-Open Publica ization step, the precursor that Supplies titanium, Zirconium tion No. 2006-182709 and hafnium to a thin film to have favorable decomposition Patent Document 5: Japanese Patent Laid-Open Publica properties by heat and/or oxidation, thermal stability, vapor tion No. H5-239.650 pressure and others that meet the requirements needed as a Patent Document 6: Japanese Patent Application Publica 60 material for forming thin films, particularly as a material for tion No. H6-60406 CVD. Patent Document 7: Japanese Patent Laid-Open Publica tion No. 2002-69641 BRIEF DESCRIPTION OF THE DRAWINGS Patent Document 8: Japanese Patent Laid-Open Publica tion No. 2005-340405 65 FIG. 1 shows the 'H-NMR chart of the metal compound Patent Document 9: Japanese Patent Laid-Open Publica (compound No. 9) of the present invention obtained in tion No. S60-258132 Example 1. US 8,003,814 B2 3 4 FIG. 2 shows the 'H-NMR chart of the metal compound -continued (compound No. 15) of the present invention obtained in Compound No. 3 Example 2. HC Sc FIG. 3 shows the measurement results of differential ther mal analysis (DTA) for the metal compound (compound No. 5 HC-C-CH 9) of the present invention, and the comparative compounds CH3 O CH3 CH of tetrakis(ethylmethylamino)Zirconium and tetrakis(tert-bu H / " toxy)Zirconium. g--O-Ti-O-- FIG. 4 shows the measurement results of differential ther- 10 HC CH O CH mal analysis (DTA) for the metal compound (compound No. 15) of the present invention, and the comparative compounds HC-C-CH of tetrakis(ethylmethylamino)hafnium and tetrakis(tert-bu toxy)hafnium. Sch, Compound No. 4 FIG. 5 is a diagrammatic illustration of an exemplary CVD 15 apparatus used in Examples that is used in the method for producing a thin film of the present invention. HC-C-CH O CH DESCRIPTION OF THE PREFERRED H M EMBODIMENT C-C-O-Ti-O-C-C / H2 H.
Recommended publications
  • 61Ni Synchrotron-Radiation-Based Mössbauer Absorption
    Hyperfine Interact (2018) 239:11 https://doi.org/10.1007/s10751-018-1488-0 61Ni synchrotron-radiation-based Mossbauer¨ absorption spectroscopy of Ni nanoparticle composites Ryo Masuda1 · Hirokazu Kobayashi2,3 · Yoshimasa Aoyama2 · Makina Saito1 · Shinji Kitao1 · Hiroki Ishibashi1 · Shuichi Hosokawa1 · Takaya Mitsui4 · Yoshitaka Yoda5 · Hiroshi Kitagawa2 · Makoto Seto1,4 © Springer International Publishing AG, part of Springer Nature 2018 Abstract We obtained energy-domain 61Ni synchrotron-radiation-based Mossbauer¨ absorption spectra of three materials that relate to nanoparticles: Ni2(C8O6H2) metal- organic frameworks (MOFs), Ni nanoparticles synthesized by complete heat decomposition of the MOFs, and the composites of Ni nanoparticles and the MOFs synthesized by par- tial decomposition of the MOFs. The 61Ni abundance of all the samples was not enriched but we were successfully able to obtain their spectra in 1 day or less, by using a highly efficient measurement system where the internal conversion electrons from energy standard 61 Ni86V14 foil were detected. Although both nanoparticle constituent and MOF constituent in the composites included Ni atoms, the Mossbauer¨ parameters of the Ni nanoparticle con- stituent could be evaluated; the magnetic hyperfine field of the Ni nanoparticle constituent in the composites was different from that of the Ni nanoparticles obtained by the complete heat decomposition. This difference implied that the 3d and/or 4s electron configuration of the nanoparticle constituent were affected by the MOF constituent
    [Show full text]
  • And Tipt-Based High-Temperature Shape Memory Alloys: a Review on Recent Advances
    metals Review TiPd- and TiPt-Based High-Temperature Shape Memory Alloys: A Review on Recent Advances Yoko Yamabe-Mitarai 1,2 1 Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan; [email protected] 2 National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan Received: 30 September 2020; Accepted: 12 November 2020; Published: 18 November 2020 Abstract: In this paper high-temperature shape memory alloys based on TiPd and TiPt are reviewed. The effect of the alloying elements in ternary TiPd and TiPt alloys on phase transformation and strain recovery is also discussed. Generally, the addition of alloying elements decreases the martensitic transformation temperature and improves the strength of the martensite and austenite phases. Additionally, it also decreases irrecoverable strain, but without perfect recovery due to plastic deformation. With the aim to improve the strength of high-temperature shape memory alloys, multi-component alloys, including medium- and high-entropy alloys, have been investigated and proposed as new structural materials. Notably, it was discovered that the martensitic transformation temperature could be controlled through a combination of the constituent elements and alloys with high austenite finish temperatures above 500 ◦C. The irrecoverable strain decreased in the multi-component alloys compared with the ternary alloys. The repeated thermal cyclic test was effective toward obtaining perfect strain recoveries in multi-component alloys, which could be good candidates for high-temperature shape memory alloys. Keywords: high-temperature shape memory alloys; titanium palladium; titanium platinum; multi-component alloys; medium-entropy alloys; high-entropy alloys 1.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • Q3D(R1) Elemental Impurities
    Q3D(R1) Elemental Impurities Guidance for Industry U. S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Q3D(R1) Elemental Impurities Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email : [email protected] https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1) ....................................................................................................... 1 II. SCOPE (2).........................................................................................................................
    [Show full text]
  • Silanes As Ligands in Transition Metal Coordination Chemistry
    inorganics Article (2-Pyridyloxy)silanes as Ligands in Transition Metal Coordination Chemistry Lisa Ehrlich 1, Robert Gericke 1 , Erica Brendler 2 and Jörg Wagler 1,* 1 Institut für Anorganische Chemie, TU Bergakademie Freiberg, D-09596 Freiberg, Germany; [email protected] (L.E.); [email protected] (R.G.) 2 Institut für Analytische Chemie, TU Bergakademie Freiberg, D-09596 Freiberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-3731-39-4343 Received: 29 September 2018; Accepted: 26 October 2018; Published: 31 October 2018 Abstract: Proceeding our initial studies of compounds with formally dative TM!Si bonds (TM = Ni, Pd, Pt), which feature a paddlewheel arrangement of four (N,S) or (N,N) bridging ligands around the TM–Si axis, the current study shows that the (N,O)-bidentate ligand 2-pyridyloxy (pyO) is also capable of bridging systems with TM!Si bonds (shown for TM = Pd, Cu). Reactions of MeSi(pyO)3 with [PdCl2(NCMe)2] and CuCl afforded the compounds MeSi(µ-pyO)4PdCl (1) and MeSi(µ-pyO)3CuCl (2), respectively. In the latter case, some crystals of the Cu(II) compound MeSi(µ-pyO)4CuCl (3) were obtained as a byproduct. Analogous reactions of Si(pyO)4, in the presence of HpyO, with [PdCl2(NCMe)2] and CuCl2, afforded the compounds [(HpyO)Si(µ-pyO)4PdCl]Cl (4), (HpyO)2Si[(µ-pyO)2PdCl2]2 (5), and (HpyO)2Si[(µ-pyO)2CuCl2]2 (6), respectively. Compounds 1–6 and the starting silanes MeSi(pyO)3 and Si(pyO)4 were characterized by single-crystal X-ray diffraction analyses and, with exception of the paramagnetic compounds 3 and 6, with NMR spectroscopy.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0313220 A1 Mamedov Et Al
    US 2011 0313220A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0313220 A1 MamedOV et al. (43) Pub. Date: Dec. 22, 2011 (54) SELECTIVE CATALYTIC HYDROGENATION (30) Foreign Application Priority Data OFALKYNES TO CORRESPONDING ALKENES Dec. 18, 2008 (EP) .................................. O8021964.5 (75) Inventors: Aggadin Kh Mamedov, Sugar Publication Classification Land, TX (US); Saeed Mohammed (51) Int. Cl. Al-Wahabi, Riyadh (SA) C07C 5/05 (2006.01) BOI 2L/02 (2006.01) (73) Assignee: SAUD BASIC INDUSTRIES (52) U.S. Cl. .......... 585/274; 585/271; 502/207: 502/204 CORPORATION, Riyadh (SA) (57) ABSTRACT (21) Appl. No.: 13/140,881 The invention relates to a process for selectively hydrogenat ing an alkyne to the corresponding alkene comprising a step (22) PCT Filed: Dec. 15, 2009 of contacting a gaseous feed comprising hydrogen and 0.1 to 20 mass % of alkyne with a catalyst comprising at least one (86). PCT No.: PCT/EP2009/008962 Group 10 element on a boron-modified support. The process shows high conversion and good selectivity, and can be stably S371 (c)(1), operated also if the feed comprises more than 2 mass % of (2), (4) Date: Sep. 12, 2011 alkyne. US 2011/0313220 A1 Dec. 22, 2011 SELECTIVE CATALYTIC HYDROGENATION presence of hydrogen over a Supported catalyst that have been OFALKYNES TO CORRESPONDING surface modified with Pd and another metal from group IB, ALKENES Such as Ag, and optionally an alkaline or alkaline earth metal. Selective hydrogenation of acetylene is typically carried out CROSS REFERENCE TO RELATED on a feed containing 98% ethylene and 2% acetylene at a APPLICATIONS space velocity of 3300 h".
    [Show full text]
  • WO 2016/094843 A2 16 June 2016 (16.06.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/094843 A2 16 June 2016 (16.06.2016) P O P C T (51) International Patent Classification: (74) Agents: BELL, Catherine, L. et al.; Exxonmobil Chemic C08F 4/02 (2006.01) al Company, Law Department, P.O. Box 2149, Baytown, TX 77522-2149 (US). (21) International Application Number: PCT/US2015/065344 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 11 December 2015 ( 11.12.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 62/091,077 12 December 2014 (12. 12.2014) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/091,071 12 December 2014 (12. 12.2014) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: EXXONMOBIL CHEMICAL PATENTS INC. [US/US]; 5200 Bayway Drive, Baytown, TX 77520 (84) Designated States (unless otherwise indicated, for every (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.472,762 B2 Murer Et Al
    US009472762B2 (12) United States Patent (10) Patent No.: US 9.472,762 B2 Murer et al. (45) Date of Patent: Oct. 18, 2016 (54) IRIDIUM ORGANOMETALLIC COMPLEX (56) References Cited CONTAINING ASUBSTITUTED DIBENZOFHQUINOXALINE AND AN U.S. PATENT DOCUMENTS ELECTRONIC DEVICE HAVING AN 7,166.368 B2 1/2007 Lecloux et al. EMITTING LAYER CONTAINING THE 8,471,248 B2 6, 2013 Schmidhalter et al. IRIDIUM COMPLEX 2003. O138662 A1 7/2003 Li et al. 2004/0001970 A1 1/2004 Qiu et al. (71) Applicant: BASF SE, Ludwigshafen (DE) 2008.0160345 A1 7/2008 Inoue et al. 2009,0283757 A1 11/2009 Seo et al. (72) Inventors: Peter Murer, Oberwil (CH); Stephan 2009/03222 17 A1 12/2009 Inoue et al. Allenbach, Sisseln (CH); Gerhard 2010, 0001638 A1 1/2010 Kawakami et al. Wagenblast, Wachenheim (DE); 2010 OO60154 A1 3/2010 Nomura et al. Christian Schildknecht, Fremont, CA 2010 OO6O155 A1 3/2010 Seo et al. 2010/0076201 A1 3/2010 Suzuki et al. (US); Christian Lennartz, Schifferstadt 2010, 0096.981 A1 4/2010 Seo et al. (DE) 2010.0156957 A1 6/2010 Ogita et al. 2011 OO894.07 A1 4/2011 Schmidhalter et al. (73) Assignee: UDC Ireland Limited, Dublin (IE) 2011 0186825 A1 8/2011 Egawa et al. 2011 01985.74 A1 8/2011 Egawa et al. (*) Notice: Subject to any disclaimer, the term of this 2011/021031.6 A1 9/2011 Kadoma et al. patent is extended or adjusted under 35 2011/0215714 A1 9, 2011 Seo et al. U.S.C. 154(b) by 0 days.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.247,086 B2 Inoue Et Al
    USOO8247086B2 (12) United States Patent (10) Patent No.: US 8.247,086 B2 Inoue et al. (45) Date of Patent: Aug. 21, 2012 (54) ORGANOMETALLIC COMPLEX AND 2009 OO15143 A1 1/2009 Inoue et al. LIGHT-EMITTING ELEMENT, 2009, O174324 A1 7, 2009 Nii et al. LIGHT-EMITTING DEVICE AND 2009, O184634 A1 7/2009 Kamatani et al. ELECTRONIC DEVICE USING THE SAME FOREIGN PATENT DOCUMENTS CN 1478.372 A 2, 2004 (75) Inventors: Hideko Inoue, Kanagawa (JP); Satoshi CN 1678617 A 10/2005 Seo, Kanagawa (JP); Nobuharu EP 1 191 612 3, 2002 EP 1 191 614 A2 3, 2002 Ohsawa, Kanagawa (JP) EP 1348711 A1 10, 2003 EP 1349 435 A1 10, 2003 (73) Assignee: Semiconductor Energy Laboratory EP 1722 602 A1 11, 2006 Co., Ltd. (JP) EP 1722 605 A1 11, 2006 EP 1881 050 A2 1, 2008 EP 1889 891 A2 2, 2008 (*) Notice: Subject to any disclaimer, the term of this JP 48-8788 A 2, 1973 patent is extended or adjusted under 35 JP 2002-105055 A 4/2002 U.S.C. 154(b) by 1183 days. JP 2002-175884. A 6, 2002 JP 2003-081988 3, 2003 JP 2005-251639 9, 2005 (21) Appl. No.: 11/607,649 JP 2005-314414 11, 2005 WO WO O2/45466 A1 6, 2002 (22) Filed: Dec. 1, 2006 WO WO 2004/O3783.6 A1 5, 2004 WO WO 2004f108857 A1 12/2004 (65) Prior Publication Data (Continued) US 2007/O129545A1 Jun. 7, 2007 OTHER PUBLICATIONS Zhang, Guo-Lin etal, Gaodeng Xuexiao Huaxue Xuebao (2004), vol. (30) Foreign Application Priority Data 25, No.
    [Show full text]
  • Inorganic Chemistry-Ii
    BSCCH- 201 B. Sc. II YEAR INORGANIC CHEMISTRY-II SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY BSCCH-201 INORGANIC CHEMISTRY-II SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies Prof. Govind Singh Prof. B. S. Saraswat Director, School of Sciences Professor Chemistry Uttarakhand Open University Department of Chemistry School of Sciences, IGNOU, New Delhi Prof S. P. S. Mehta Prof. D. S. Rawat Professor Chemistry Professor Chemistry Department of Chemistry Department of Chemistry DSB Campus, Kumaun University Delhi University, Delhi Nainital Dr. Charu C. Pant Programme Coordinator Department of Chemistry School of Sciences, Uttarakhand Open University Haldwani, Nainital Programme Coordinators Dr. Shalini Singh (Assistant Professor) Department of Chemistry School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit Written By Unit No. 1. Dr. K. S. Dhami (Ret. Proff.) 01, 02, 03, 04 & 05 Department of Chemistry D.S.B. Campus, Kumaun University Nainital 2. Dr. Geeta Tiwari 06, 07, 08 & 09 Department of Chemistry D.S.B. Campus, Kumaun University Nainital Course Editor Prof. B.S. Saraswat Professor of Chemistry (Retd.) School of Sciences, Indira Gandhi National Open University (IGNOU), Maidan Garhi, New Delhi - 110068 Title : Inorganic Chemistry II ISBN No. : 978-93-90845-04-0 Copyright : Uttarakhand Open University Edition : 2021 Published by : Uttarakhand
    [Show full text]
  • The National Ha Ett Luciditate
    THE NATIONALUS009780386B2 HA ETT LUCIDITATE (12 ) United States Patent ( 10 ) Patent No. : US 9 ,780 , 386 B2 Kwon et al. ( 45) Date of Patent : Oct . 3 , 2017 ( 54 ) COMPOSITE FOR LITHIUM AIR BATTERY, (2013 . 01 ) ; C01P 2004/ 04 ( 2013 . 01) ; COIP METHOD OF PREPARING THE 2004 /64 ( 2013. 01 ) ; COIP 2004 /86 ( 2013 .01 ) ; COMPOSITE , AND LITHIUM AIR BATTERY COIP 2006 / 16 ( 2013 . 01 ) ; EMPLOYING POSITIVE ELECTRODE ( Continued ) INCLUDING THE COMPOSITE (58 ) Field of Classification Search @(71 ) Applicant: Samsung Electronics Co ., Ltd ., CPC .. HO1M 4 / 9091; HOTM 4 / 8605 ; HO1M 12/ 08 Suwon - si , Gyeonggi- do (KR ) See application file for complete search history . @( 72 ) Inventors : Soonchul Kwon , Hwaseong -si (KR ) ; Dongjin Ham , Hwaseong- si (KR ) ; ( 56 ) References Cited Victor Roev , Suwon - si (KR ) ; Dongmin U . S . PATENT DOCUMENTS Im , Seoul (KR ) 6 ,355 , 377 B1 3 /2002 Sheem et al. @( 73 ) Assignee : SAMSUNG ELECTRONICS CO ., 7 ,282 ,295 B2 10 / 2007 Visco et al . LTD ., Gyeonggi- Do (KR ) (Continued ) ( * ) Notice : Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP 1806805 A3 7 / 2007 U . S . C . 154 ( b ) by 33 days . EP 2717366 A1 4 /2014 ( 21 ) Appl. No .: 14 /818 , 665 ( Continued ) (22 ) Filed : Aug. 5 , 2015 OTHER PUBLICATIONS Korean Office Action for Korean Patent Application No . 10 - 2015 (65 ) Prior Publication Data 0067600 dated Jun . 7 , 2016 . US 2016 /0043408 A1 Feb . 11 , 2016 ( Continued ) ( 30 ) Foreign Application Priority Data Primary Examiner - Jane Rhee Aug . 8 , 2014 (KR ) .. .. .. .. 10 - 2014 -0102625 May 14 , 2015 (KR ) .. .. .. .. .. .. .. .. 10 - 2015 -0067600 ( 74 ) Attorney , Agent, or Firm — Cantor Colburn LLP (51 ) Int.
    [Show full text]
  • Chalcogenocarboxylic Acids
    Top Curr Chem (2005) 251: 1–12 DOI 10.1007/b101005 © Springer-Verlag Berlin Heidelberg 2005 Chalcogenocarboxylic Acids Osamu Niyomura1 · Shinzi Kato2 () 1 Division of Chemistry, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228–8555, Japan [email protected] 2 Department of Applied Chemistry, School of Engineering, Chubu University, Matsumoto-Cho, Kasugai, Aichi, 487–8501, Japan [email protected] 1 Introduction . 2 2 Syntheses . 3 2.1 Monochalcogenocarboxylic Acids . 3 2.2 Dichalcogenocarboxylic Acids . 3 3 Structures and Physical Properties . 4 3.1 Spectroscopic Studies . 4 3.2 X-ray Structural Analyses . 6 3.3 Theoretical Studies . 7 4Reactions . 8 4.1 Thiocarboxylic Acids . 8 4.2 Dithiocarboxylic Acids . 10 4.3 Seleno- and Tellurocarboxylic Acids . 10 References . 11 Abstract Although thio- and dithio-carboxylic acids have been extensively studied for some time now, research into other chalcogenocarboxylic acids – containing selenium and tel- lurium – has only blossomed over the last decade. Monochalcogenocarboxylic acids exist as fast tautomeric equilibrium mixtures of chalcogenol and chalcogenoxo forms. The chal- cogenol form is the predominant species in solid state and nonpolar solvents. In contrast, in polar solvents at low temperature, the acids predominantly exist in the chalcogenoxo form. Syntheses of heavier dichalcogenocarboxylic acids have only been attempted very recently.This chapter presents the results from recent studies of chalcogenocarboxylic acids, their syntheses, structures and reactions. Keywords Chalcogenocarboxylic acids · Chalcogenol form · Chalcogenoxo form · Carboxylic acids · Chalcogens 2 O. Niyomura · S. Kato 1 Introduction Carboxylic acids are one of the most fundamental and important groups of compounds in organic chemistry.
    [Show full text]