Catalytic Methods for Alkene Functionalization Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Catalytic Methods for Alkene Functionalization Reactions Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Catalytic methods for alkene functionalization reactions Abhishek Ashok Kadam Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Organic Chemistry Commons Recommended Citation Kadam, Abhishek Ashok, "Catalytic methods for alkene functionalization reactions" (2019). Graduate Theses and Dissertations. 17712. https://lib.dr.iastate.edu/etd/17712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Catalytic methods for alkene functionalization reactions by Abhishek Ashok Kadam A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Organic Chemistry Program of Study Committee: Levi M. Stanley, Major Professor George Kraus Aaron Sadow Arthur Winter Wenyu Huang The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Abhishek Ashok Kadam, 2019. All rights reserved. ii Dedicated to my mother and father iii TABLE OF CONTENTS Page NOMENCLATURE ......................................................................................................... iv ACKNOWLEDGEMENTS ............................................................................................... vi ABSTRACT……………………………………………………………………… ........... ix CHAPTER 1. INTRODUCTION ....................................................................................... 1 CHAPTER 2. ENATIOSELECTIVE, PALLADIUM-CATALZYED CONJUGATE ADDITIONS OF ARYLBORONIC ACIDS TO b-ARYL, b,b-DISUBSTITUTED ENONES TO BIS-BENZYLIC QUATERNARY STEREOCENTERS .......................... 14 Abstract…………………………………………………………………………..14 Introduction………………………………………………………………………15 Results and Discussions………………………………………………………….17 Conclusion.………………………………………………………………………23 Experimental……………………………………………………………………..23 References………………………………………………………………………..50 CHAPTER 3. NICKEL-CATALYZED THREE-COMPONENT ALKENE CARBOACYLATION VIA ACTIVATION OF AMIDE C-N BONDS ......................... 53 Abstract…………………………………………………………………………..53 Introduction………………………………………………………………………54 Results and Discussions………………………………………………………….56 Conclusion……………………………………………………………………….66 Experimental……………………………………………………………………..66 References………………………………………………………………………..99 CHAPTER 4. PALLADIUM-CATALYZED, INTERMOLECULAR ACYLATIVE HECK REACTION USING AMIDES AS ACYL ELECTROPHILES ........................ 102 Abstract…………………………………………………………………………102 Introduction……………………………………………………………………..102 Results and Discussions………………………………………………………...107 Conclusions……………………………………………………………………..119 Experimental……………………………………………………………………120 References………………………………………………………………………129 CHAPTER 5. CONCLUSION ....................................................................................... 132 Summary………………………………………………………………………..132 Conclusions……………………………………………………………………..133 iv NOMENCLATURE Ar aryl equiv equivalent DCM dichloromethane THF tetrahydrofuran Et2O diethylether CPME cyclopentylmethylether COD 1,5-cyclooctadiene DMAP dimethylaminopyridine Et3N triethylamine DMSO dimethylsulfoxide DMF dimethylformamide EtOAc ethylacetate NMR Nuclear Magnetic Resonance HPLC High Performance Liquid Chromatography HRMS High Resolution Mass Spectrometry ESI Electrospray Ionization Pr propyl Bu butyl TLC Thin Layer Chromatography UV Ultra-violet h Hours ee enantiomeric excess v GC Gas Chromatography TFA trifluoroacetate MHz Megahertz dr diastereomeric ratio o ortho m meta p para sat saturated M molar mL milliliter calcd calculated cat catalyst vi ACKNOWLEDGMENTS I would like to take this opportunity to thank my advisor Prof. Levi Stanley for his constant support throughout my time here at Iowa State University. Levi, you have been a great role model. Your passion and dedication for science is truly inspiring. I look up to you for the professionalism with which you carry yourself. Thank you for always being patient and available for discussing problems, potential solutions, and new ideas. I have enjoyed talking about new ideas with you and getting feedback with constructive criticism. I would like to thank my committee members, Prof. George Kraus, Prof. Keith Woo, Prof. Aaron Sadow, Prof. Wenyu Haung, and Prof. Arthur Winter, for their advice over the years. I like to extend my gratitude to my advisor Prof. Levi Stanley, Prof. Aaron Sadow, and Prof. Wenyu Haung for writing recommendation letters for me. I am grateful to Drtina Chemistry Graduate Student Travel Award, GPSS Professional Development Grant (PAG) Award, and David N. and Minnie I. Wall Graduate Scholarship Award for their support. The journey of grad school has truly been a roller coaster ride where some times were scary and some full of thrill. I am thankful to all my family and friends for being there whenever I needed. To my mom and dad, thank you for being patient with me. I can barely start to imagine the struggle you must have gone through to first, give me the education I needed and then send me away to a different country. Dad, thank you for instilling in me the values of hard work and discipline. Mom, yes, I have had my lunch today! To my sister, thank you for being there always and taking care of mom and dad ever since I have been away from home. I can’t thank enough the three of you for your unconditional love and support. vii I consider myself lucky for having some incredible friends who have been very supportive and encouraging of my decisions. I would like to thank Aleem, Avipsa, Raghu, Naresh Anna, Shreyo, Mani, Pratik, Nitin, Abhijith, and Jani for being amazing seniors. I will cherish all the memories we have created together. Abhranil, thank you for being an awesome friend. Avipsa, thank you for your constant help and guidance when I first started out in the Stanley group. Aleem and Anna, thank you for all the delicious food you fed me! Raghu, thank you for being a great host during my first few days in Ames and a dear friend. I would like to express my gratitude to all my Stanley group collogues. Ryan, Tony, Kirsten, James, Sagarika, Tanner, Kevin, and Brian- you guys were a great bunch of people to work with. Tanner, I hope you enjoyed our arguments over the mechanism as much as I did! Thank you all for the help and discussion with the chemistry. Alex, Patrick, Haley, Hai, Kevin, Mason, Austin, Melisa- I look forward to all the amazing chemistry you guys will be putting out. Patrick and Melisa, I will cherish all our talks over (sometimes too many) long island ice teas at Café B. A major chunk of all my happy memories in Ames comes from spending time with all the awesome, cool, and talented musicians of PunkPunditz. Santhosh, Srikanth, Arpa, Amar, Soori, Jyothsna, Mehul, Anuraag, Amrit, Aishwarya, Yash, Neel, Debarpan, Akshay, Abhinav, and Sushain- we have created some awesome music together. I will be playing all these songs again and again for the rest of my life. A special thanks to my todd drive family, Shubhra, Yash, Neel, Jyothsna, Aishwarya, and Slesha, for all the food and movie nights! I would also like to thank Kruttika, Ashwini, Malvika, Amrit, Saurabh, and Harshil for all the fun trips and night-outs. viii A special shout out to my close friends, Ajinkya, Mallikarjun, Kaustubh, Nikhil, and Aditya, for being some of the best people in my life. Ajinkya and Mallik, thank you for visiting my place back home every now and then. My mom and dad thank you for revealing all my secrets! To Kaustubh, Nikhil, and Aditya- I hope we continue to explore more places around the world even if our lives get busier. I would like to thank Iowa State University and the Department of Chemistry at Iowa State University for making this a wonderful research experience. ix ABSTRACT This thesis presents the efforts towards developing transition metal-catalyzed protocols for rapid functionalization of alkenes. These protocols include – 1) enantioselective, palladium-catalyzed conjugate additions of arylboronic acids to generate compounds containing bis-benzylic quaternary stereocenter; 2) nickel-catalyzed three- component alkene carboacylation via activation of amide C-N bonds; 3) palladium- catalyzed intermolecular, acylative Heck reaction using amides as acyl electrophiles. Chapter II discusses a strategy to access cyclic ketones containing bis-benzylic quaternary stereocenters through enantioselective palladium-catalyzed conjugate additions of arylboronic acids to β-aryl β,β-disubstituted cyclic enones. The catalyst generated from palladium trifluoroacetate and a chiral, non-racemic (S)-4-tert-butyl-2-(2- pyridyl)oxazoline ligand allows conjugate addition of a wide range arylboronic acids to a variety of to β-aryl β,β-disubstituted cyclic enones to generate ketones containing bis- benzylic quaternary stereocenters in up to 92% yield and up to 93% ee. This protocol uses iterative addition strategy to minimize unproductive protodeboronation of arylboronic acid and leads to the formation
Recommended publications
  • The Arene–Alkene Photocycloaddition
    The arene–alkene photocycloaddition Ursula Streit and Christian G. Bochet* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 525–542. Department of Chemistry, University of Fribourg, Chemin du Musée 9, doi:10.3762/bjoc.7.61 CH-1700 Fribourg, Switzerland Received: 07 January 2011 Email: Accepted: 23 March 2011 Ursula Streit - [email protected]; Christian G. Bochet* - Published: 28 April 2011 [email protected] This article is part of the Thematic Series "Photocycloadditions and * Corresponding author photorearrangements". Keywords: Guest Editor: A. G. Griesbeck benzene derivatives; cycloadditions; Diels–Alder; photochemistry © 2011 Streit and Bochet; licensee Beilstein-Institut. License and terms: see end of document. Abstract In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. Introduction Photocycloadditions occur in a variety of modes [1]. The best In the presence of an alkene, three different modes of photo- known representatives are undoubtedly the [2 + 2] photocyclo- cycloaddition with benzene derivatives can occur, viz. the addition, forming either cyclobutanes or four-membered hetero- [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para cycles (as in the Paternò–Büchi reaction), whilst excited-state photocycloaddition (Scheme 2). The descriptors ortho, meta [4 + 4] cycloadditions can also occur to afford cyclooctadiene and para only indicate the connectivity to the aromatic ring, and compounds. On the other hand, the well-known thermal [4 + 2] do not have any implication with regard to the reaction mecha- cycloaddition (Diels–Alder reaction) is only very rarely nism.
    [Show full text]
  • Aromatic Compounds
    OCR Chemistry A Aromatic Compounds Aromatic Compounds Naming Aromatic compounds contain one or more benzene rings (while aliphatic compounds do not contain benzene rings). Another term for a compound containing a benzene ring is arene. The basic benzene ring, C6H6 is commonly represented as a hexagon with a ring inside. You should be aware that there is a hydrogen at each corner although this is not normally shown. N.B. it is OK to use benzene in this form in structural formulae too! Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO O O CH 3 O Naming of substances based on benzene follows familiar rules: CH Br NO 3 2 benzene methylbenzene bromobenzene nitrobenzene Numbers are needed to identify the positions of substituents. The carbons around the ring are numbered from 1-6 consecutively and the name which gives the lowest number(s) is chosen: CH3 CH3 Cl Br Cl Br 2-bromomethylbenzene 4-bromomethylbenzene 1,2-dichlorobenzene Cl Cl Cl 1,3,5-trichlorobenzene Page 1 OCR Chemistry A Aromatic Compounds Determining the structure of benzene (historical) 1825 – substance first isolated by Michael Faraday, who also determined its empirical formula as CH 1834 – RFM of 78 and molecular formula of C6H6 determined H H H C C C Much speculation over the structure. Many suggested structures like: C C C H H H 1865 – Kekulé publishes suggestion of a ring with alternating double and single bonds: H H C H C C displayed C C skeletal H C H H This model persisted until 1922, but not all chemists accepted the structure because it failed to explain the chemical and physical properties of benzene fully: if C=C bonds were present as Kekulé proposed, then benzene would react like alkenes.
    [Show full text]
  • Introduction to Alkenes and Alkynes in an Alkane, All Covalent Bonds
    Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene, however, only three σ bonds are formed from the alkene carbon -the carbon thus adopts an sp2 hybridization Ethene (common name ethylene) has a molecular formula of CH2CH2 Each carbon is sp2 hybridized with a σ bond to two hydrogens and the other carbon Hybridized orbital allows stronger bonds due to more overlap H H C C H H Structure of Ethylene In addition to the σ framework of ethylene, each carbon has an atomic p orbital not used in hybridization The two p orbitals (each with one electron) overlap to form a π bond (p bonds are not symmetric about the internuclear axis) π bonds are not as strong as σ bonds (in ethylene, the σ bond is ~90 Kcal/mol and the π bond is ~66 Kcal/mol) Thus while σ bonds are stable and very few reactions occur with C-C bonds, π bonds are much more reactive and many reactions occur with C=C π bonds Nomenclature of Alkenes August Wilhelm Hofmann’s attempt for systematic hydrocarbon nomenclature (1866) Attempted to use a systematic name by naming all possible structures with 4 carbons Quartane a alkane C4H10 Quartyl C4H9 Quartene e alkene C4H8 Quartenyl C4H7 Quartine i alkine → alkyne C4H6 Quartinyl C4H5 Quartone o C4H4 Quartonyl C4H3 Quartune u C4H2 Quartunyl C4H1 Wanted to use Quart from the Latin for 4 – this method was not embraced and BUT has remained Used English order of vowels, however, to name the groups
    [Show full text]
  • Recent Advances on Mechanistic Studies on C–H Activation
    Open Chem., 2018; 16: 1001–1058 Review Article Open Access Daniel Gallego*, Edwin A. Baquero Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals https:// doi.org/10.1515/chem-2018-0102 received March 26, 2018; accepted June 3, 2018. 1Introduction Abstract: During the last ten years, base metals have Application in organic synthesis of transition metal- become very attractive to the organometallic and catalytic catalyzed cross coupling reactions has been positioned community on activation of C-H bonds for their catalytic as one of the most important breakthroughs during the functionalization. In contrast to the statement that new millennia. The seminal works based on Pd–catalysts base metals differ on their mode of action most of the in the 70’s by Heck, Noyori and Suzuki set a new frontier manuscripts mistakenly rely on well-studied mechanisms between homogeneous catalysis and synthetic organic for precious metals while proposing plausible chemistry [1-5]. Late transition metals, mostly the precious mechanisms. Consequently, few literature examples metals, stand as the most versatile catalytic systems for a are found where a thorough mechanistic investigation variety of functionalization reactions demonstrating their have been conducted with strong support either by robustness in several applications in organic synthesis [6- theoretical calculations or experimentation. Therefore, 12]. Owing to the common interest in the catalysts mode we consider of highly scientific interest reviewing the of action by many research groups, nowadays we have a last advances on mechanistic studies on Fe, Co and Mn wide understanding of the mechanistic aspects of precious on C-H functionalization in order to get a deep insight on metal-catalyzed reactions.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Chapter 7 - Alkenes and Alkynes I
    Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name of acetylene 7.2 - The (E)-(Z) System for Designating Alkene Diastereomers - To determine E or Z, look at the two groups attached to one carbon atom of the double bond and decide which has higher priority. Then, repeat this at the other carbon atom. This system is not used for cycloalkenes - If the two groups of higher priority are on the same side of the double bond, the alkene is designated Z. If the two groups of higher priority are on opposite sides of the double bond, the alkene is designated E - Hydrogenation is a syn/cis addition 7.3 - Relative Stabilities of Alkenes - The trans isomer is generally more stable than the cis isomer due to electron repulsions - The addition of hydrogen to an alkene, hydrogenation, is exothermic (heat of hydrogenation) - The greater number of attached alkyl groups, the greater the stability of an alkene 7.5 - Synthesis of Alkenes via Elimination Reactions, 7.6 - Dehydrohalogenation of Alkyl Halides How to Favor E2: - Reaction conditions that favor elimination by E1 should be avoided due to the highly competitive SN 1 mechanism - To favor E2, a secondary or tertiary alkyl halide should be used - If there is only a possibility for a primary alkyl halide, use a bulky base - Use a higher concentration of a strong and nonpolarizable base, like an alkoxide - EtONa=EtOH favors the more substituted double bond
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • INVESTIGATION of POLYCYCLIC AROMATIC HYDROCARBONS (Pahs) on DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS
    INVESTIGATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ON DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping Sun, M.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Linda Weavers, Adviser Professor Harold Walker Professor Patrick Hatcher Adviser Professor Yu-Ping Chin Civil Engineering Graduate Program ABSTRACT The primary goal of this research was to examine polycyclic aromatic hydrocarbons (PAHs) on dry FGD by-products to determine environmentally safe reuse options of this material. Due to the lack of information on the analytical procedures for measuring PAHs on FGD by-products, our initial work focused on analytical method development. Comparison of the traditional Soxhlet extraction, automatic Soxhlet extraction, and ultrasonic extraction was conducted to optimize the extraction of PAHs from lime spray dryer (LSD) ash (a common dry FGD by-product). Due to the short extraction time, ultrasonic extraction was further optimized by testing different organic solvents. Ultrasonic extraction with toluene as the solvent turned out to be a fast and efficient method to extract PAHs from LSD ash. The possible reactions of PAHs under standard ultrasonic extraction conditions were then studied to address concern over the possible degradation of PAHs by ultrasound. By sonicating model PAHs including naphthalene, phenanthrene and pyrene in organic solutions, extraction parameters including solvent type, solute concentration, and sonication time on reactions of PAHs were examined. A hexane: acetone (1:1 V/V) ii mixture resulted in less PAH degradation than a dichloromethane (DCM): acetone (1:1 V/V) mixture.
    [Show full text]
  • 25WORDS ETHYLENE Ethylene, C2H4 ,Is an Unsaturated
    25WORDS ETHYLENE Ethylene, C2H4 ,is an unsaturated hydrocarbon that is used in industrial plants and sometimes as a hormone in an average medicine cabinet. It also is the most globally produced organic compound in the world. Ethylene, C2H4, is a hydrocarbon gas that is widely used in the world's industry for purposes like ripening fruit, making detergents, and for making soda. It is also highly flammable and colorless. Ethylene is an unsaturated hydrocarbon, composed of four hydrogen atoms bound to a pair of carbon atoms by means of a double bond. Ethylene has a molar mass of 28.05 g/mol Ethylene is the simplest member of the class called alkenes. It is a colorless, quite sweet- smelling gas. This gas is very reactive and burns with a very bright flame. ethylene (C2H4); Ethylene is known as the simplest alkene and an important hormone in organic chemistry. Over 80% of ethylene is used as a main component of polyethylene and to ripen fruit faster. Ethylene, C2H4, is a colorless gas that can be used as an inhalation anesthetic. This gas is also commonly used to keep fruit ripe as well as to cut and wield metals. Ethylene, C2H4, is an unsaturated hydrocarbon. It is used in anesthetic agents and in detergents. It is the most widely produced organic compound in the world. Ethylene (C2H4): Ethylene is an unsaturated hydrocarbon that is used in the production of polyethylene, a widely used plastic. It can be modified to become ethylene glycol (an antifreeze) and ethylene dichloride (used in creating polyvinyl chloride Ethlyene; Ethylene, C2H4, is a colorless, odorless gas that can be produced in nature as well as man-made processes.
    [Show full text]
  • 2.1 the 18-ELECTRON RULE the 18E Rule1 Is a Way to Help Us Decide
    30 GENERAL PROPERTIES OF ORGANOMETALLIC COMPLEXES 2.1 THE 18-ELECTRON RULE The 18e rule1 is a way to help us decide whether a given d-block transition metal organometallic complex is likely to be stable. Not all the organic formulas we can write down correspond to stable species. For example, CH5 requires a 5-valent carbon and is therefore not stable. Stable compounds, such as CH4,have the noble gas octet, and so carbon can be thought of as following an 8e rule. This corresponds to carbon using its s and three p orbitals to form four filled bonding orbitals and four unfilled antibonding orbitals. On the covalent model, we can consider that of the eight electrons required to fill the bonding orbitals, four come from carbon and one each comes from the four H substituents. We can therefore think of each H atom as being a 1e ligand to carbon. To assign a formal oxidation state to carbon in an organic molecule, we impose an ionic model by artificially dissecting it into ions. Each electron pair in any bond is assigned to the most electronegative of the two atoms or groups that constitute the bond. For methane, this dissection gives C4− + 4H+, with carbon as the more electronegative element. This makes methane an 8e compound with an oxidation state of −4, usually written C(-IV). Note that the net electron count always remains the same, whether we adopt the covalent (4e {Catom}+4 × 1e {4H atoms}=8e) or ionic (8e{C4−ion}+4 × 0e{4H+ions}=8e) model.
    [Show full text]
  • Assessing the Feasibility of a One-Pot, Tandem Olefin Metathesis and Isomerization Sequence to Synthesize Conjugated Aromatic Olefins
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 8-2016 Assessing the feasibility of a one-pot, tandem olefin metathesis and isomerization sequence to synthesize conjugated aromatic olefins Ajay D. Makwana University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Chemistry Commons Recommended Citation Makwana, Ajay D., "Assessing the feasibility of a one-pot, tandem olefin metathesis and isomerization sequence to synthesize conjugated aromatic olefins" (2016). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. Assessing the Feasibility of a One-Pot, Tandem Olefin Metathesis and Isomerization Sequence to Synthesize Conjugated Aromatic Olefins Ajay D. Makwana Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Chemistry Project Director: Dr. Kyle S. Knight Examination Date: April 4, 2016 Members of Examination Committee: Dr. John P. Lee Dr. Han J. Park Dr. David Giles 1 Abstract The synthesis of substituted phenylpropene dimers using a one-pot, tandem olefin metathesis and isomerization sequence has been studied. This sequence relies on the facilitated, in-situ conversion of a ruthenium carbene species (Ru=C) to a ruthenium hydride species (Ru-H) upon addition of an inorganic hydride source. Three separate reactions occur within one reaction flask: 1) olefin metathesis of the starting phenylpropene to yield phenylpropene dimer via Ru=C catalyst, 2) conversion of Ru=C to Ru-H via addition of an inorganic hydride source, 3) isomerization of phenylpropene dimer via insertion and β-hydride elimination to yield conjugated product.
    [Show full text]
  • Wilkinson's Catalyst
    Homogeneous Catalytic Processes Hydroformylation RCH2CH2 O RCH CH2 + CO + H2 Co(I), Rh(I) or Pt(II) H Oxidation H3C O H2CCH2 + O2 Pd(II) or Cu(II) H Carbonylation H3C O - CH3OH + CO [RhI2(CO)2] OH Hydrocyanation [Ni{P(OR) } ] H CCC CH + 2HCN 3 4 NCCH CH CH CH CN 2 H H 2 2 2 2 2 Cyclotrimerization Ni(acac) 3 HC CH 2 Hydrogenation of Alkenes The most commonly used catalyst is the Wilkinson’s Catalyst Many alkenes are hydrogenated with hydrogen at 1atm pressure or less . Wilkinson’s catalyst is highly sensitive to the nature of the phosphine ligand and the alkene substrate. Analogous catalysts with alkyl phosphine ligands are inactive Highly hindered alkenes and ethylene are not hydrogenated by the catalyst Wilkinson’s Catalyst Ph3P PPh3 R CH3 Rh H2 Ph3P Cl Reductive Elimination Oxidative Addition R H H PPh3 H PPh3 Rh Rh Ph3P Cl Ph3P Cl PPh3 PPh3 Ligand Dissociation Ligand Association PPh3 PPh3 H R H PPh3 Rh H PPh3 Cl Rh Ph3P Cl PPh3 H Migratory Insertion H PPh3 Rh R Ph3P Cl Alkene Coordination R Hydroformylation Catalyst + CO + H2 RCH2CH2CHO R A less common,,pppyy but more appropriate name is hydrocarbonylation Both cobalt and rhodium complexes are used as catalysts. Alkene iitiisomerization, alkene hdhydrogena tion and ftiformation of bhdbranched alde hy des are the possible side reactions. Cobalt catalysts operate at 150 ºC and 250 atm, whereas Rhodium catalysts operate at moderate temperatures and 1 atm. Rhodium catalysts promotes the formation of linear aldehydes. Cobalt catalysts do so if modified with alkylphosphine ligands.
    [Show full text]