Theories and Proof Systems for PSPACE and the EXP-Time Hierarchy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, SCS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
- 
												  EXPSPACE-Hardness of Behavioural Equivalences of Succinct OneEXPSPACE-hardness of behavioural equivalences of succinct one-counter nets Petr Janˇcar1 Petr Osiˇcka1 Zdenˇek Sawa2 1Dept of Comp. Sci., Faculty of Science, Palack´yUniv. Olomouc, Czech Rep. [email protected], [email protected] 2Dept of Comp. Sci., FEI, Techn. Univ. Ostrava, Czech Rep. [email protected] Abstract We note that the remarkable EXPSPACE-hardness result in [G¨oller, Haase, Ouaknine, Worrell, ICALP 2010] ([GHOW10] for short) allows us to answer an open complexity ques- tion for simulation preorder of succinct one counter nets (i.e., one counter automata with no zero tests where counter increments and decrements are integers written in binary). This problem, as well as bisimulation equivalence, turn out to be EXPSPACE-complete. The technique of [GHOW10] was referred to by Hunter [RP 2015] for deriving EXPSPACE-hardness of reachability games on succinct one-counter nets. We first give a direct self-contained EXPSPACE-hardness proof for such reachability games (by adjust- ing a known PSPACE-hardness proof for emptiness of alternating finite automata with one-letter alphabet); then we reduce reachability games to (bi)simulation games by using a standard “defender-choice” technique. 1 Introduction arXiv:1801.01073v1 [cs.LO] 3 Jan 2018 We concentrate on our contribution, without giving a broader overview of the area here. A remarkable result by G¨oller, Haase, Ouaknine, Worrell [2] shows that model checking a fixed CTL formula on succinct one-counter automata (where counter increments and decre- ments are integers written in binary) is EXPSPACE-hard. Their proof is interesting and nontrivial, and uses two involved results from complexity theory.
- 
												  Probabilistic Proof Systems: a PrimerProbabilistic Proof Systems: A Primer Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Rehovot, Israel. June 30, 2008 Contents Preface 1 Conventions and Organization 3 1 Interactive Proof Systems 4 1.1 Motivation and Perspective ::::::::::::::::::::::: 4 1.1.1 A static object versus an interactive process :::::::::: 5 1.1.2 Prover and Veri¯er :::::::::::::::::::::::: 6 1.1.3 Completeness and Soundness :::::::::::::::::: 6 1.2 De¯nition ::::::::::::::::::::::::::::::::: 7 1.3 The Power of Interactive Proofs ::::::::::::::::::::: 9 1.3.1 A simple example :::::::::::::::::::::::: 9 1.3.2 The full power of interactive proofs ::::::::::::::: 11 1.4 Variants and ¯ner structure: an overview ::::::::::::::: 16 1.4.1 Arthur-Merlin games a.k.a public-coin proof systems ::::: 16 1.4.2 Interactive proof systems with two-sided error ::::::::: 16 1.4.3 A hierarchy of interactive proof systems :::::::::::: 17 1.4.4 Something completely di®erent ::::::::::::::::: 18 1.5 On computationally bounded provers: an overview :::::::::: 18 1.5.1 How powerful should the prover be? :::::::::::::: 19 1.5.2 Computational Soundness :::::::::::::::::::: 20 2 Zero-Knowledge Proof Systems 22 2.1 De¯nitional Issues :::::::::::::::::::::::::::: 23 2.1.1 A wider perspective: the simulation paradigm ::::::::: 23 2.1.2 The basic de¯nitions ::::::::::::::::::::::: 24 2.2 The Power of Zero-Knowledge :::::::::::::::::::::: 26 2.2.1 A simple example :::::::::::::::::::::::: 26 2.2.2 The full power of zero-knowledge proofs ::::::::::::
- 
												  Hyperoperations and Nopt StructuresHyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles.
- 
												  An Introduction to Ramsey Theory Fast Functions, Infinity, and MetamathematicsSTUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters 10.1090/stml/087 An Introduction to Ramsey Theory STUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters Editorial Board Satyan L. Devadoss John Stillwell (Chair) Rosa Orellana Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 05D10, 03-01, 03E10, 03B10, 03B25, 03D20, 03H15. Jan Reimann was partially supported by NSF Grant DMS-1201263. For additional information and updates on this book, visit www.ams.org/bookpages/stml-87 Library of Congress Cataloging-in-Publication Data Names: Katz, Matthew, 1986– author. | Reimann, Jan, 1971– author. | Pennsylvania State University. Mathematics Advanced Study Semesters. Title: An introduction to Ramsey theory: Fast functions, infinity, and metamathemat- ics / Matthew Katz, Jan Reimann. Description: Providence, Rhode Island: American Mathematical Society, [2018] | Series: Student mathematical library; 87 | “Mathematics Advanced Study Semesters.” | Includes bibliographical references and index. Identifiers: LCCN 2018024651 | ISBN 9781470442903 (alk. paper) Subjects: LCSH: Ramsey theory. | Combinatorial analysis. | AMS: Combinatorics – Extremal combinatorics – Ramsey theory. msc | Mathematical logic and foundations – Instructional exposition (textbooks, tutorial papers, etc.). msc | Mathematical
- 
												  A Survey of Recursive Analysis and Moore's Notion of Real ComputationA Survey of Recursive Analysis and Moore’s Notion of Real Computation Walid Gomaa INRIA Nancy Grand-Est Research Centre, France, Faculty of Engineering, Alexandria University, Egypt [email protected] Abstract The theory of analog computation aims at modeling computational systems that evolve in a continuous manner. Unlike the situation with the discrete setting there is no unified theory of analog computation. There are several proposed theories, some of them seem quite orthogonal. Some theories can be considered as generalizations of the Turing machine theory and classical recursion theory. Among such are recursive analysis and Moore’s class of recursive real functions. Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955]. Real computation in this context is viewed as effective (in the sense of Turing machine theory) convergence of sequences of rational numbers. In 1996 Moore introduced a function algebra that captures his notion of real computation; it consists of some basic functions and their closure under composition, integration and zero- finding. Though this class is inherently unphysical, much work have been directed at stratifying, restricting, and comparing it with other theories of real computation such as recursive analysis and the GPAC. In this article we give a detailed exposition of recursive analysis and Moore’s class and the relationships between them. 1 Introduction Analog computation is a computational paradigm that attempts to model systems whose internal states are continuous rather than discrete. Unlike the case of discrete computation, which has enjoyed a kind of uniformity and conceptual universality, there have been several approaches to analog computations some of which are not even comparable.
- 
												  26 Space ComplexityCS:4330 Theory of Computation Spring 2018 Computability Theory Space Complexity Haniel Barbosa Readings for this lecture Chapter 8 of [Sipser 1996], 3rd edition. Sections 8.1, 8.2, and 8.3. Space Complexity B We now consider the complexity of computational problems in terms of the amount of space, or memory, they require B Time and space are two of the most important considerations when we seek practical solutions to most problems B Space complexity shares many of the features of time complexity B It serves a further way of classifying problems according to their computational difficulty 1 / 22 Space Complexity Definition Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N ! N, where f (n) is the maximum number of tape cells that M scans on any input of length n. Definition If M is a nondeterministic Turing machine, NTM, wherein all branches of its computation halt on all inputs, we define the space complexity of M, f (n), to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n. 2 / 22 Estimation of space complexity Let f : N ! N be a function. The space complexity classes, SPACE(f (n)) and NSPACE(f (n)), are defined by: B SPACE(f (n)) = fL j L is a language decided by an O(f (n)) space DTMg B NSPACE(f (n)) = fL j L is a language decided by an O(f (n)) space NTMg 3 / 22 Example SAT can be solved with the linear space algorithm M1: M1 =“On input h'i, where ' is a Boolean formula: 1.
- 
												  0.1 Axt, Loop Program, and Grzegorczyk Hier- Archies1 0.1 Axt, Loop Program, and Grzegorczyk Hier- archies Computable functions can have some quite complex definitions. For example, a loop programmable function might be given via a loop program that has depth of nesting of the loop-end pair, say, equal to 200. Now this is complex! Or a function might be given via an arbitrarily complex sequence of primitive recursions, with the restriction that the computed function is majorized by some known function, for all values of the input (for the concept of majorization see Subsection on the Ackermann function.). But does such definitional|and therefore, \static"|complexity have any bearing on the computational|dynamic|complexity of the function? We will see that it does, and we will connect definitional and computational complexities quantitatively. Our study will be restricted to the class PR that we will subdivide into an infinite sequence of increasingly more inclusive subclasses, Si. A so-called hierarchy of classes of functions. 0.1.0.1 Definition. A sequence (Si)i≥0 of subsets of PR is a primitive recur- sive hierarchy provided all of the following hold: (1) Si ⊆ Si+1, for all i ≥ 0 S (2) PR = i≥0 Si. The hierarchy is proper or nontrivial iff Si 6= Si+1, for all but finitely many i. If f 2 Si then we say that its level in the hierarchy is ≤ i. If f 2 Si+1 − Si, then its level is equal to i + 1. The first hierarchy that we will define is due to Axt and Heinermann [[5] and [1]].
- 
												  Computational ComplexityComputational complexity Plan Complexity of a computation. Complexity classes DTIME(T (n)). Relations between complexity classes. Complete problems. Domino problems. NP-completeness. Complete problems for other classes Alternating machines. – p.1/17 Complexity of a computation A machine M is T (n) time bounded if for every n and word w of size n, every computation of M has length at most T (n). A machine M is S(n) space bounded if for every n and word w of size n, every computation of M uses at most S(n) cells of the working tape. Fact: If M is time or space bounded then L(M) is recursive. If L is recursive then there is a time and space bounded machine recognizing L. DTIME(T (n)) = fL(M) : M is det. and T (n) time boundedg NTIME(T (n)) = fL(M) : M is T (n) time boundedg DSPACE(S(n)) = fL(M) : M is det. and S(n) space boundedg NSPACE(S(n)) = fL(M) : M is S(n) space boundedg . – p.2/17 Hierarchy theorems A function S(n) is space constructible iff there is S(n)-bounded machine that given w writes aS(jwj) on the tape and stops. A function T (n) is time constructible iff there is a machine that on a word of size n makes exactly T (n) steps. Thm: Let S2(n) be a space-constructible function and let S1(n) ≥ log(n). If S1(n) lim infn!1 = 0 S2(n) then DSPACE(S2(n)) − DSPACE(S1(n)) is nonempty. Thm: Let T2(n) be a time-constructible function and let T1(n) log(T1(n)) lim infn!1 = 0 T2(n) then DTIME(T2(n)) − DTIME(T1(n)) is nonempty.
- 
												  Hierarchies of Recursive FunctionsLeibniz Universitat¨ Hannover Institut f¨urtheoretische Informatik Bachelor Thesis Hierarchies of recursive functions Maurice Chandoo February 21, 2013 Erkl¨arung Hiermit versichere ich, dass ich diese Arbeit selbst¨andigverfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. i Dedicated to my dear grandmother Anna-Maria Kniejska ii Contents 1 Preface 1 2 Class of primitve recursive functions PR 2 2.1 Primitive Recursion class PR ..................2 2.2 Course-of-value Recursion class PRcov .............4 2.3 Nested Recursion class PRnes ..................5 2.4 Recursive Depth . .6 2.5 Recursive Relations . .6 2.6 Equivalence of PR and PRcov .................. 10 2.7 Equivalence of PR and PRnes .................. 12 2.8 Loop programs . 14 2.9 Grzegorczyk Hierarchy . 19 2.10 Recursive depth Hierarchy . 22 2.11 Turing Machine Simulation . 24 3 Multiple and µ-recursion 27 3.1 Multiple Recursion class MR .................. 27 3.2 µ-Recursion class µR ....................... 32 3.3 Synopsis . 34 List of literature 35 iii 1 Preface I would like to give a more or less exhaustive overview on different kinds of recursive functions and hierarchies which characterize these functions by their computational power. For instance, it will become apparent that primitve recursion is more than sufficiently powerful for expressing algorithms for the majority of known decidable ”real world” problems. This comes along with the hunch that it is quite difficult to come up with a suitable problem of which the characteristic function is not primitive recursive therefore being a possible candidate for exploiting the more powerful multiple recursion. At the end the Turing complete µ-recursion is introduced.
- 
												  (Design And) Analysis of Algorithms NP and Complexity ClassesIntro P and NP Hard problems CSE 548: (Design and) Analysis of Algorithms NP and Complexity Classes R. Sekar 1 / 38 Intro P and NP Hard problems Search and Optimization Problems Many problems of our interest are search problems with exponentially (or even infinitely) many solutions Shortest of the paths between two vertices Spanning tree with minimal cost Combination of variable values that minimize an objective We should be surprised we find ecient (i.e., polynomial-time) solutions to these problems It seems like these should be the exceptions rather than the norm! What do we do when we hit upon other search problems? 2 / 38 Intro P and NP Hard problems Hard Problems: Where you find yourself ... I can’t find an ecient algorithm, I guess I’m just too dumb. Images from “Computers and Intractability” by Garey and Johnson 3 / 38 Intro P and NP Hard problems Search and Optimization Problems What do we do when we hit upon hard search problems? Can we prove they can’t be solved eciently? 4 / 38 Intro P and NP Hard problems Hard Problems: Where you would like to be ... I can’t find an ecient algorithm, because no such algorithm is possible. Images from “Computers and Intractability” by Garey and Johnson 5 / 38 Intro P and NP Hard problems Search and Optimization Problems Unfortunately, it is very hard to prove that ecient algorithms are impossible Second best alternative: Show that the problem is as hard as many other problems that have been worked on by a host of brilliant scientists over a very long time Much of complexity theory is concerned with categorizing hard problems into such equivalence classes 6 / 38 Intro P and NP Hard problems P, NP, Co-NP, NP-hard and NP-complete 7 / 38 Intro P and NP Hard problems Nondeterminism and Search Problems Nondeterminism is an oft-used abstraction in language theory Non-deterministic FSA Non-deterministic PDA So, why not non-deterministic Turing machines? Acceptance criteria is analogous to NFA and NPDA if there is a sequence of transitions to an accepting state, an NDTM will take that path.
- 
												  Advanced ComplexityAdvanced Complexity TD n◦3 Charlie Jacomme September 27, 2017 Exercise 1 : Space hierarchy theorem Using a diagonal argument, prove that for two space-constructible functions f and g such that f(n) = o(g(n)) (and as always f; g ≥ log) we have SPACE(f(n)) ( SPACE(g(n)). Solution: We dene a language which can be recognized using space O(g(n)) but not in f(n). L = f(M; w)jM reject w using space ≤ g(j(M; w)j andjΓj = 4g Where Γis the alphabet of the Turing Machine We show that L 2 SPACE(g(n)) by constructing the corresponding TM. This is where we need the fact that the alphabet is bounded. Indeed, we want to construct one xed machine that recognizes L for any TM M, and if we allow M to have an arbitrary size of alphabet, the xed machine might need a lot of space in order to represent the alphabet of M, and it might go over O(g(n)). On an input x, we compute g(x) and mark down an end of tape marker at position f(x), so that we reject if we use to much space. If x is not of the form (M; w), we reject, else we simulate M on w for at most jQj × 4g(x) × n steps. If we go over the timeout, we reject. Else, if w is accepted, we reject, and if w is rejected, we accept. This can be done in SPACE(O(g(n))), and we conclude with the speed up theorem.