Computational Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Computational Complexity Computational complexity Plan Complexity of a computation. Complexity classes DTIME(T (n)). Relations between complexity classes. Complete problems. Domino problems. NP-completeness. Complete problems for other classes Alternating machines. – p.1/17 Complexity of a computation A machine M is T (n) time bounded if for every n and word w of size n, every computation of M has length at most T (n). A machine M is S(n) space bounded if for every n and word w of size n, every computation of M uses at most S(n) cells of the working tape. Fact: If M is time or space bounded then L(M) is recursive. If L is recursive then there is a time and space bounded machine recognizing L. DTIME(T (n)) = fL(M) : M is det. and T (n) time boundedg NTIME(T (n)) = fL(M) : M is T (n) time boundedg DSPACE(S(n)) = fL(M) : M is det. and S(n) space boundedg NSPACE(S(n)) = fL(M) : M is S(n) space boundedg . – p.2/17 Hierarchy theorems A function S(n) is space constructible iff there is S(n)-bounded machine that given w writes aS(jwj) on the tape and stops. A function T (n) is time constructible iff there is a machine that on a word of size n makes exactly T (n) steps. Thm: Let S2(n) be a space-constructible function and let S1(n) ≥ log(n). If S1(n) lim infn!1 = 0 S2(n) then DSPACE(S2(n)) − DSPACE(S1(n)) is nonempty. Thm: Let T2(n) be a time-constructible function and let T1(n) log(T1(n)) lim infn!1 = 0 T2(n) then DTIME(T2(n)) − DTIME(T1(n)) is nonempty. – p.3/17 Relations between complexity classes Thm: 1. DTIME(T (n)) ⊆ NTIME(T (n)) 2. NTIME(T (n)) ⊆ DSPACE(T (n)) 3. DSPACE(S(n)) ⊆ NSPACE(S(n)) cS(n) 4. DSPACE(S(n)) ⊆ Sc>0 DTIME(2 ), for S(n) ≥ log(n). cS(n) 5. NSPACE(S(n)) ⊆ Sc>0 DTIME(2 ), for S(n) ≥ log(n) which is space constructible. Thm[Sawitch]: If S(n) ≥ log(n) is space constructible then 2 NSPACE(S(n)) ⊆ DSPACE(S(n) ). Thm[Immerman, Szelepcsenyi]: If S(n) ≥ log(n) is space constructible then NSPACE(S(n)) is closed under complementation. – p.4/17 Some standard complexity classes LOGSPACE = DSPACE(log(n)) NLOGSPACE = NSPACE(log(n)) c P = PTIME = Sc2 DTIME(n ) c NP = Sc2 NTIME(n ) c c PSPACE = Sc2 DSPACE(n ) = Sc2 NSPACE(n ) nc EXPTIME = Sc2 DTIME(2 ) nc NEXPTIME = Sc2 NTIME(2 ) nc nc EXPSPACE = Sc2 DSPACE(2 ) = Sc2 NSPACE(2 ) LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE ⊆ ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE NLOGSPACE =6 PSPACE =6 EXPSPACE P =6 EXPTIME NP =6 NEXPTIME . – p.5/17 Reductions, complete problems ∗ ∗ We say that L1 ⊆ Σ1 is poly-time reducible to L2 ⊆ Σ2 ∗ ∗ (L1 ≤P L2) if there is a function f : Σ1 ! Σ2 computable in PTIME such that w 2 L1 iff '(w) 2 L2 Similarly for log-space reducible. Language L hard for a class K if for every L0 2 K there is poly-time reducible to L. Language L is complete for a class K if L 2 K and L is hard for K. Fact: 0 0 If L ≤P L and L 2 P then L 2 P. If there exists NP-complete language L such that L 2 P then P = NP. 0 0 If L is NP-complete and L ≤p L then L is NP-hard. – p.6/17 Domino problems Let C ba a countable set of colours. A domino type is a quadruple d = (l; r; u; d) of colours. D1: Given a finite set T of domino types, number n (in unary) and two domino types dl, du, decide if a grid n × n can be tiled with dominoes of types from T so that the bottom leftmost tile is of type dl and top leftmost tile is of type du. D2: The same but now we need to find m such that there is a tiling of n × m. D3: The same but now we need to find both m and n. D4: Given d and T is there a tiling of a quarter of the plane N × N with leftmost bottom tile of type d. – p.7/17 Domino problems cont. D1: Given a finite set T of domino types, number n (in unary) and two domino types dl, du, decide if a grid n × n can be tiled with dominoes of types from T so that the bottom leftmost tile is of type dl and top leftmost tile is of type du. D2: The same but now we need to find m such that there is a tiling of n × m. D3: The same but now we need to find both m and n. D4: Given d and T is there a tiling of a quarter of the plane N × N with leftmost bottom tile of type d. Thm: Problem D1 is NP-complete. Problem D2 is PSPACE-complete. Problem D3 is r.e. but not recursive. Problem 0 D4 is Π1 in the arithmetic hierarchy. – p.8/17 Problem D1 Take M = hQ; Σ; Γ; q0; B; δ; A; Ri. Let p(n) be the polynomial time bound for M. For every word w 2 Σ∗ we construct a set of tile types T (w) of size jT (w)j = O(p(jwj), and two types dl and dr so that w 2 L(M) iff problem D1 has a solution for (T (w); dl; dr; p(jwj)). – p.9/17 Tiles jL qw0 w1 wn 0 0 1 1 2 n n + 1 Initial tiles: jL ? ? . ? . B B jR n + 1 n + 2 p(n) − 1 p(n) p(n) ¡ ? . ? jR a jL jR ¡ B B B B a Copy tiles: for a 2 Σ jL jR b q0c B q0R q0R B qa c Transition tiles: if (q; a; q0; b; +1) 2 δ q0c b B q0L q0L B c qa if (q; a; q0; b; −1) 2 δ . – p.10/17 SAT problem is NP complete Reduction of D1 to SAT. Let n, T = fd1; : : : ; dkg and dl; du be given. Consider the formulas: n n k Vi=1 Vj=1(Wm=1 LRUDi;j = dm) n n Vi=1 Vj=1(RIGHTi;j = LEFTi+1;j ^ UPi;j = DOWNi;j+1) LRUD1;1 = dl, LRUD1;n = du The conjunction of these formulas is satisfiable iff (T; dl; dr; n) has a solution. – p.11/17 Other NP-complete problems 3-SAT is NP-complete: (α11 _ α12 _ α13) ^ · · · ^ (αn1 _ αn2 _ αn3). Graph coloring is NP-complete: (G; k). Clique problem is NP-complete: (G; k). Hamilton cycle problem is NP complete: G. Knapsack problem is NP complete: i1; : : : ; ik; min; max 2 N, check existence of A ⊆ f1; : : : ; kg such that min ≤ Pj2A ij ≤ max. – p.12/17 Class CONP ∗ L 2 CONP iff Σ − L 2 NP. Fact: If L is NP-complete and L 2 CONP then NP = CONP. Fact: fα : α is a true propositional formulag is CONP complete. ∗ PRIMES = fw 2 f0; 1g : w is a binary repr. of a prime numberg PRIMES 2 CONP PRIMES 2 NP. Thm[Agrawal, Kayal, Saxena, 2002]: PRIMES 2 P. Parity game: a finite game with a Mostowski winning condition and fixed initial vertex. PG = fG : player 0 has a winning strategy in the parity game Gg PG 2 NP \ CONP Open: Is PG 2 P? . – p.13/17 PSPACE Quantified Boolean Formulas (QBF): 9x1:8x2: : : : :9xn.α where x1; : : : ; xn are propositional variables and α a propositional formula. Thm: The set fβ : β is a true QBF formulag is PSPACE-complete. – p.14/17 Alternating Turing Machines M = hQ9; Q8; Σ; Γ; q0; B; δ; A; Ri Such a machine accepts iff player 9 has a winning strategy in the associated game. We can define ATIME(T (n)) and ASPACE(S(n)) as a maximal time and space used in any possible computation. P Σi = fL(M) : M is a ATIME(p(n)) machine with (i − 1) alternations and starting in 9 state} P Πi = fL(M) : M is a ATIME(p(n)) machine with (i − 1) alternations and starting in 8 state} P P Σ1 = NP, Π1 = CONP. – p.15/17 ATIME and ASPACE Thm: If S(n) ≥ log(n) then 2 2 NSPACE(S(n)) ⊆ ATIME(S(n) ) ⊆ DSPACE(S(n) ). cS(n) Thm: If S(n) ≥ log(n) then ASPACE(S(n)) = Sc2 DTIME(2 ). – p.16/17 Exercises 2 What is the relation between classes DSPACE(n ) and 3 DSPACE(S(n)) where S(n) = n for n even and S(n) = n for n odd. n n What is the relation between NSPACE(2 ) and DSPACE(5 ). Show that if there is a PSPACE-hard language L such that L 2 P then PSPACE = P. L 2 NP iff there is a polynomial p(n) and a language R 2 P such that L = fx : 9y: jyj = p(jxj) and (x; y) 2 Rg. Show that if there is a NP-complete language over singleton alphabet then P = NP. – p.17/17.
Recommended publications
  • COMPLEXITY THEORY Review Lecture 13: Space Hierarchy and Gaps
    COMPLEXITY THEORY Review Lecture 13: Space Hierarchy and Gaps Markus Krotzsch¨ Knowledge-Based Systems TU Dresden, 26th Dec 2018 Markus Krötzsch, 26th Dec 2018 Complexity Theory slide 2 of 19 Review: Time Hierarchy Theorems Time Hierarchy Theorem 12.12 If f , g : N N are such that f is time- → constructible, and g log g o(f ), then · ∈ DTime (g) ( DTime (f ) ∗ ∗ Nondeterministic Time Hierarchy Theorem 12.14 If f , g : N N are such that f → is time-constructible, and g(n + 1) o(f (n)), then A Hierarchy for Space ∈ NTime (g) ( NTime (f ) ∗ ∗ In particular, we find that P , ExpTime and NP , NExpTime: , L NL P NP PSpace ExpTime NExpTime ExpSpace ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ , Markus Krötzsch, 26th Dec 2018 Complexity Theory slide 3 of 19 Markus Krötzsch, 26th Dec 2018 Complexity Theory slide 4 of 19 Space Hierarchy Proving the Space Hierarchy Theorem (1) Space Hierarchy Theorem 13.1: If f , g : N N are such that f is space- → constructible, and g o(f ), then For space, we can always assume a single working tape: ∈ Tape reduction leads to a constant-factor increase in space • DSpace(g) ( DSpace(f ) Constant factors can be eliminated by space compression • Proof: Again, we construct a diagonalisation machine . We define a multi-tape TM Therefore, DSpacek(f ) = DSpace1(f ). D D for inputs of the form , w (other cases do not matter), assuming that , w = n hM i |hM i| Compute f (n) in unary to mark the available space on the working tape Space turns out to be easier to separate – we get: • Space Hierarchy Theorem 13.1: If f , g : N N are such that f is space- Initialise a separate countdown tape with the largest binary number that can be → • constructible, and g o(f ), then written in f (n) space ∈ Simulate on , w , making sure that only previously marked tape cells are • M hM i DSpace(g) ( DSpace(f ) used Time-bound the simulation using the content of the countdown tape by • Challenge: TMs can run forever even within bounded space.
    [Show full text]
  • Database Theory
    DATABASE THEORY Lecture 4: Complexity of FO Query Answering Markus Krotzsch¨ TU Dresden, 21 April 2016 Overview 1. Introduction | Relational data model 2. First-order queries 3. Complexity of query answering 4. Complexity of FO query answering 5. Conjunctive queries 6. Tree-like conjunctive queries 7. Query optimisation 8. Conjunctive Query Optimisation / First-Order Expressiveness 9. First-Order Expressiveness / Introduction to Datalog 10. Expressive Power and Complexity of Datalog 11. Optimisation and Evaluation of Datalog 12. Evaluation of Datalog (2) 13. Graph Databases and Path Queries 14. Outlook: database theory in practice See course homepage [) link] for more information and materials Markus Krötzsch, 21 April 2016 Database Theory slide 2 of 41 How to Measure Query Answering Complexity Query answering as decision problem { consider Boolean queries Various notions of complexity: • Combined complexity (complexity w.r.t. size of query and database instance) • Data complexity (worst case complexity for any fixed query) • Query complexity (worst case complexity for any fixed database instance) Various common complexity classes: L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime Markus Krötzsch, 21 April 2016 Database Theory slide 3 of 41 An Algorithm for Evaluating FO Queries function Eval(', I) 01 switch (') f I 02 case p(c1, ::: , cn): return hc1, ::: , cni 2 p 03 case : : return :Eval( , I) 04 case 1 ^ 2 : return Eval( 1, I) ^ Eval( 2, I) 05 case 9x. : 06 for c 2 ∆I f 07 if Eval( [x 7! c], I) then return true 08 g 09 return false 10 g Markus Krötzsch, 21 April 2016 Database Theory slide 4 of 41 FO Algorithm Worst-Case Runtime Let m be the size of ', and let n = jIj (total table sizes) • How many recursive calls of Eval are there? { one per subexpression: at most m • Maximum depth of recursion? { bounded by total number of calls: at most m • Maximum number of iterations of for loop? { j∆Ij ≤ n per recursion level { at most nm iterations I • Checking hc1, ::: , cni 2 p can be done in linear time w.r.t.
    [Show full text]
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University
    Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University What is the complexity of plan generation? . How much time and space (memory) do we need? Vague question – let’s try to be more specific… . Assume an infinite set of problem instances ▪ For example, “all classical planning problems” . Analyze all possible algorithms in terms of asymptotic worst case complexity . What is the lowest worst case complexity we can achieve? . What is asymptotic complexity? ▪ An algorithm is in O(f(n)) if there is an algorithm for which there exists a fixed constant c such that for all n, the time to solve an instance of size n is at most c * f(n) . Example: Sorting is in O(n log n), So sorting is also in O( ), ▪ We can find an algorithm in O( ), and so on. for which there is a fixed constant c such that for all n, If we can do it in “at most ”, the time to sort n elements we can do it in “at most ”. is at most c * n log n Some problem instances might be solved faster! If the list happens to be sorted already, we might finish in linear time: O(n) But for the entire set of problems, our guarantee is O(n log n) So what is “a planning problem of size n”? Real World + current problem Abstraction Language L Approximation Planning Problem Problem Statement Equivalence P = (, s0, Sg) P=(O,s0,g) The input to a planner Planner is a problem statement The size of the problem statement depends on the representation! Plan a1, a2, …, an PDDL: How many characters are there in the domain and problem files? Now: The complexity of PLAN-EXISTENCE .
    [Show full text]
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • The Complexity of Space Bounded Interactive Proof Systems
    The Complexity of Space Bounded Interactive Proof Systems ANNE CONDON Computer Science Department, University of Wisconsin-Madison 1 INTRODUCTION Some of the most exciting developments in complexity theory in recent years concern the complexity of interactive proof systems, defined by Goldwasser, Micali and Rackoff (1985) and independently by Babai (1985). In this paper, we survey results on the complexity of space bounded interactive proof systems and their applications. An early motivation for the study of interactive proof systems was to extend the notion of NP as the class of problems with efficient \proofs of membership". Informally, a prover can convince a verifier in polynomial time that a string is in an NP language, by presenting a witness of that fact to the verifier. Suppose that the power of the verifier is extended so that it can flip coins and can interact with the prover during the course of a proof. In this way, a verifier can gather statistical evidence that an input is in a language. As we will see, the interactive proof system model precisely captures this in- teraction between a prover P and a verifier V . In the model, the computation of V is probabilistic, but is typically restricted in time or space. A language is accepted by the interactive proof system if, for all inputs in the language, V accepts with high probability, based on the communication with the \honest" prover P . However, on inputs not in the language, V rejects with high prob- ability, even when communicating with a \dishonest" prover. In the general model, V can keep its coin flips secret from the prover.
    [Show full text]
  • EXPSPACE-Hardness of Behavioural Equivalences of Succinct One
    EXPSPACE-hardness of behavioural equivalences of succinct one-counter nets Petr Janˇcar1 Petr Osiˇcka1 Zdenˇek Sawa2 1Dept of Comp. Sci., Faculty of Science, Palack´yUniv. Olomouc, Czech Rep. [email protected], [email protected] 2Dept of Comp. Sci., FEI, Techn. Univ. Ostrava, Czech Rep. [email protected] Abstract We note that the remarkable EXPSPACE-hardness result in [G¨oller, Haase, Ouaknine, Worrell, ICALP 2010] ([GHOW10] for short) allows us to answer an open complexity ques- tion for simulation preorder of succinct one counter nets (i.e., one counter automata with no zero tests where counter increments and decrements are integers written in binary). This problem, as well as bisimulation equivalence, turn out to be EXPSPACE-complete. The technique of [GHOW10] was referred to by Hunter [RP 2015] for deriving EXPSPACE-hardness of reachability games on succinct one-counter nets. We first give a direct self-contained EXPSPACE-hardness proof for such reachability games (by adjust- ing a known PSPACE-hardness proof for emptiness of alternating finite automata with one-letter alphabet); then we reduce reachability games to (bi)simulation games by using a standard “defender-choice” technique. 1 Introduction arXiv:1801.01073v1 [cs.LO] 3 Jan 2018 We concentrate on our contribution, without giving a broader overview of the area here. A remarkable result by G¨oller, Haase, Ouaknine, Worrell [2] shows that model checking a fixed CTL formula on succinct one-counter automata (where counter increments and decre- ments are integers written in binary) is EXPSPACE-hard. Their proof is interesting and nontrivial, and uses two involved results from complexity theory.
    [Show full text]
  • Lecture 14 (Feb 28): Probabilistically Checkable Proofs (PCP) 14.1 Motivation: Some Problems and Their Approximation Algorithms
    CMPUT 675: Computational Complexity Theory Winter 2019 Lecture 14 (Feb 28): Probabilistically Checkable Proofs (PCP) Lecturer: Zachary Friggstad Scribe: Haozhou Pang 14.1 Motivation: Some problems and their approximation algorithms Many optimization problems are NP-hard, and therefore it is unlikely to efficiently find optimal solutions. However, in some situations, finding a provably good-enough solution (approximation of the optimal) is also acceptable. We say an algorithm is an α-approximation algorithm for an optimization problem iff for every instance of the problem it can find a solution whose cost is a factor of α of the optimum solution cost. Here are some selected problems and their approximation algorithms: Example: Min Vertex Cover is the problem that given a graph G = (V; E), the goal is to find a vertex cover C ⊆ V of minimum size. The following algorithm gives a 2-approximation for Min Vertex Cover: Algorithm 1 Min Vertex Cover Algorithm Input: Graph G = (V; E) Output: a vertex cover C of G. C ; while some edge (u; v) has u; v2 = C do C C [ fu; vg end while return C Claim 1 Let C∗ be an optimal solution, the returned solution C satisfies jCj ≤ 2jC∗j. Proof. Let M be the edges considered by the algorithm in the loop, we have jCj = 2jMj. Also, jC∗j covers M and no two edges in M share an endpoint (M is a matching), so jC∗j ≥ jMj. Therefore, jCj = 2jMj ≤ 2jC∗j. Example: Max SAT is the problem that given a CNF formula, the goal is to find a assignment that satisfies as many clauses as possible.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Complexity Theory
    Complexity Theory Course Notes Sebastiaan A. Terwijn Radboud University Nijmegen Department of Mathematics P.O. Box 9010 6500 GL Nijmegen the Netherlands [email protected] Copyright c 2010 by Sebastiaan A. Terwijn Version: December 2017 ii Contents 1 Introduction 1 1.1 Complexity theory . .1 1.2 Preliminaries . .1 1.3 Turing machines . .2 1.4 Big O and small o .........................3 1.5 Logic . .3 1.6 Number theory . .4 1.7 Exercises . .5 2 Basics 6 2.1 Time and space bounds . .6 2.2 Inclusions between classes . .7 2.3 Hierarchy theorems . .8 2.4 Central complexity classes . 10 2.5 Problems from logic, algebra, and graph theory . 11 2.6 The Immerman-Szelepcs´enyi Theorem . 12 2.7 Exercises . 14 3 Reductions and completeness 16 3.1 Many-one reductions . 16 3.2 NP-complete problems . 18 3.3 More decision problems from logic . 19 3.4 Completeness of Hamilton path and TSP . 22 3.5 Exercises . 24 4 Relativized computation and the polynomial hierarchy 27 4.1 Relativized computation . 27 4.2 The Polynomial Hierarchy . 28 4.3 Relativization . 31 4.4 Exercises . 32 iii 5 Diagonalization 34 5.1 The Halting Problem . 34 5.2 Intermediate sets . 34 5.3 Oracle separations . 36 5.4 Many-one versus Turing reductions . 38 5.5 Sparse sets . 38 5.6 The Gap Theorem . 40 5.7 The Speed-Up Theorem . 41 5.8 Exercises . 43 6 Randomized computation 45 6.1 Probabilistic classes . 45 6.2 More about BPP . 48 6.3 The classes RP and ZPP .
    [Show full text]
  • Arxiv:Quant-Ph/0202111V1 20 Feb 2002
    Quantum statistical zero-knowledge John Watrous Department of Computer Science University of Calgary Calgary, Alberta, Canada [email protected] February 19, 2002 Abstract In this paper we propose a definition for (honest verifier) quantum statistical zero-knowledge interactive proof systems and study the resulting complexity class, which we denote QSZK. We prove several facts regarding this class: The following natural problem is a complete promise problem for QSZK: given instructions • for preparing two mixed quantum states, are the states close together or far apart in the trace norm metric? By instructions for preparing a mixed quantum state we mean the description of a quantum circuit that produces the mixed state on some specified subset of its qubits, assuming all qubits are initially in the 0 state. This problem is a quantum generalization of the complete promise problem of Sahai| i and Vadhan [33] for (classical) statistical zero-knowledge. QSZK is closed under complement. • QSZK PSPACE. (At present it is not known if arbitrary quantum interactive proof • systems⊆ can be simulated in PSPACE, even for one-round proof systems.) Any honest verifier quantum statistical zero-knowledge proof system can be parallelized to • a two-message (i.e., one-round) honest verifier quantum statistical zero-knowledge proof arXiv:quant-ph/0202111v1 20 Feb 2002 system. (For arbitrary quantum interactive proof systems it is known how to parallelize to three messages, but not two.) Moreover, the one-round proof system can be taken to be such that the prover sends only one qubit to the verifier in order to achieve completeness and soundness error exponentially close to 0 and 1/2, respectively.
    [Show full text]