Development and Application of Aquatic Toxicology Studies for The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stefan Konstańczak Human Ecology
Stefan Konstańczak Human ecology Studia Ecologiae et Bioethicae 4, 9-15 2006 7 " Studia E cologiae et Bioethicae 4/2006 Stefan KONSTAŃCZAK PAP Słupsk Human ecology Introduction Several years ago UNESCO published a document presenting fields of knowledge that will be necessary in future education rendered to societies.1 ^ e document comprises seven chapters, which, among others, deal with the problems pertaining to shaping of group identity of the entire humanity, threats and hopes along the way toward development of the human species, sense of human existence put into individual and social perspectives, and concludes by calling for new ethics that would embrace changes to world order that the present world is currently facing. In this epoch it is human that is the single highest good (summum bonum), and all other values will gain their significance based on their scope of relations with the man. ^ is work’s guiding principle is the concern over the future of human species, which, according to its author is threatened not so much by degradation of nature, as by degradation of social environment. Upon reading that paper one can conclude that men cease to control their artifacts, especially those of science and technology; they are no longer capable of accomplishing their goals in a simple, direct manner. More and more commonly people feel lost and alienated from reality in they live in. It is as if we were to learn anew how to handle everyday life’s situations. At the same time, as Morin declares, it is the humanity that is our planet’s destiny, and it is hard to imagine Earth devoid of our presence anymore. -
Aquatic Toxicology MEES 743 3 Credits SPRING 2019 (Also Listed As TOX 625)
Aquatic Toxicology MEES 743 3 credits SPRING 2019 (also listed as TOX 625) Course Objectives / Overview This course will provide students with a broad perspective on the subject INSTRUCTOR DETAILS: of aquatic toxicology. It is a comprehensive course in which a definitive description of basic concepts and principles, laboratory testing and field Faculty Details: situations, as well as examples of typical data and their interpretation and Dr. Carys Mitchelmore use by industry and water resource managers, will be discussed. The fate [email protected] and toxicological action of environmental pollutants will be examined in 410-326-7283 aquatic ecosystems, whole organisms and at the cellular, biochemical and molecular levels. Current and emerging issues will be used as case studies CLASS MEETING DETAILS: throughout the course to illustrate specific ecosystems (e.g. Chesapeake Bay), pollution events (e.g. Deepwater Horizon Oil Spill), particular Date: Monday/Wednesday organisms (e.g. coral reefs) or a specific class of contaminants. Classes Time: 12-1.30pm will consist of lectures by the instructor together with some guest Originating Site: UMCES, CBL speakers in addition to group discussions. IVN bridge number: (800414) Phone call in number: (***) Expected Learning Outcomes Room phone number: CBL, Ed Houde Teaching suite Following completion of this course students will; (1) Have experience applying basic concepts in environmental COURSE TYPE: science, including environmental chemistry, biology and Check all that apply physiology, ecosystem health, management and regulatory issues, ☐ as they relate to pollution of aquatic ecosystems. Foundation (2) Be able to identify a current topic of concern and summarize ☐ Professional Development current data/papers in an oral presentation including directing an ☐ Issue Study Group open discussion with the rest of the class. -
AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank ÂÂ an INTRODUCTION to AQUATIC TOXICOLOGY
AN INTRODUCTION TO AQUATIC TOXICOLOGY This page intentionally left blank AN INTRODUCTION TO AQUATIC TOXICOLOGY MIKKO NIKINMAA Professor of Zoology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
Harmful Algal Blooms (Habs) and Public Health: Progress and Current Challenges
Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges Edited by Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer Printed Edition of the Special Issue Published in Toxins www.mdpi.com/journal/toxins Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer (Eds.) Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges This book is a reprint of the Special Issue that appeared in the online, open access journal, Toxins (ISSN 2072-6651) from 2014–2015 (available at: http://www.mdpi.com/journal/toxins/special_issues/HABs?sort=asc). Guest Editors Lesley V. D’Anglada U.S. Environmental Protection Agency USA Elizabeth D. Hilborn United States Environmental Protection Agency USA Lorraine C. Backer National Center for Environmental Health USA Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Chao Xiao 1. Edition 2016 MDPI • Basel • Beijing • Wuhan • Barcelona ISBN 978-3-03842-155-9 (Hbk) ISBN 978-3-03842-156-6 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of physical copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents List of Contributors ............................................................................................................ VII About the Guest Editors......................................................................................................... X Preface Reprinted from: Toxins 2015, 7, 4437-4441 http://www.mdpi.com/2072-6651/7/11/4437 .................................................................... -
Behavioral Analysis of Microphallus Turgidus Cercariae in Relation to Microhabitat of Two Host Grass Shrimp Species (Palaemonetes Spp.)
W&M ScholarWorks VIMS Articles 2017 Behavioral analysis of Microphallus turgidus cercariae in relation to microhabitat of two host grass shrimp species (Palaemonetes spp.) PA O'Leary Virginia Institute of Marine Science OJ Pung Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation O'Leary, PA and Pung, OJ, "Behavioral analysis of Microphallus turgidus cercariae in relation to microhabitat of two host grass shrimp species (Palaemonetes spp.)" (2017). VIMS Articles. 774. https://scholarworks.wm.edu/vimsarticles/774 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Vol. 122: 237–245, 2017 DISEASES OF AQUATIC ORGANISMS Published January 24 doi: 10.3354/dao03075 Dis Aquat Org Behavioral analysis of Microphallus turgidus cercariae in relation to microhabitat of two host grass shrimp species (Palaemonetes spp.) Patricia A. O’Leary1,2,*, Oscar J. Pung1 1Department of Biology, Georgia Southern University, Statesboro, Georgia 30458, USA 2Present address: Department of Aquatic Health Sciences, Virginia Institute of Marine Science, PO Box 1346, State Route 1208, Gloucester Point, Virginia 23062, USA ABSTRACT: The behavior of Microphallus turgidus cercariae was examined and compared to microhabitat selection of the second intermediate hosts of the parasite, Palaemonetes spp. grass shrimp. Cercariae were tested for photokinetic and geotactic responses, and a behavioral etho- gram was established for cercariae in control and grass shrimp-conditioned brackish water. Photo - kinesis trials were performed using a half-covered Petri dish, and geotaxis trials used a graduated cylinder. -
Comparative Study of Potential Transfer of Natural and Anthropogenic Cadmium to Plankton Communities in the North-West African Upwelling
1 Science Of The Total Environment A chimer February 2015, Volume 505 Pages 870-888 r http://archimer.ifremer.fr http://dx.doi.org/10.1016/j.scitotenv.2014.10.045 http://archimer.ifremer.fr/doc/00252/36310/ © 2014 Elsevier B.V. All rights reserved. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling Auger Pierre-Amael 1 * , Machu Eric 1, 4, Gorgues Thomas 1, 4, Grima Nicolas 3, 4, Waeles Mathieu 2, 4 1 UBO, IRD, IFREMER, LPO,UMR 6523,CNRS, F-29280 Plouzane, France. 2 UBO, IRD, Lab Environm Mario LEMAR, UMR 6539,CNRS, F-29280 Plouzane, France. 3 CNRS, France 4 Ifremer, France * Corresponding author : Pierre Amael Auger, tel.: + 33 298498662 ; email address : [email protected] Abstract : A Lagrangian approach based on a physical-biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the NorthWest African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. -
Evaluating Juvenile Thermal Tolerance As a Constraint on Adult Range of Gray Snapper (Lutjanus Griseus): a Combined Laboratory, Field and Modeling Approach
Evaluating juvenile thermal tolerance as a constraint on adult range of gray snapper (Lutjanus griseus): A combined laboratory, field and modeling approach Mark J. Wuenschel, Jonathan A. Hare, Matthew E. Kimball, and Kenneth W. Able SEDAR51-RD-17 October 2016 Journal of Experimental Marine Biology and Ecology 436-437 (2012) 19–27 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Evaluating juvenile thermal tolerance as a constraint on adult range of gray snapper (Lutjanus griseus): A combined laboratory, field and modeling approach Mark J. Wuenschel a,b,⁎, Jonathan A. Hare c, Matthew E. Kimball a,d,e, Kenneth W. Able a a Marine Field Station, Institute of Marine and Coastal Sciences, Rutgers University, 800 c/o 132 Great Bay Boulevard, Tuckerton, NJ 08087, United States b NOAA NMFS Woods Hole Laboratory, 166 Water Street, Woods Hole, MA 02543, United States c NOAA NMFS Narragansett Laboratory, 28 Tarzwell Drive, Narragansett, RI 02882, United States d GTM National Estuarine Research Reserve, 505 Guana River Road, Ponte Vedra Beach, FL 32082, United States e Biology Department, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States article info abstract Article history: Climate change is expected to cause a poleward shift of many temperate species, however, a mechanistic un- Received 6 December 2011 derstanding of how temperature and species' life histories interact to produce observed adult range is often Received in revised form 15 August 2012 lacking. We evaluated the hypothesis that juvenile thermal tolerance determines northern range in gray Accepted 16 August 2012 snapper (Lutjanus griseus), a species commonly caught as juveniles along the US Atlantic coast well north Available online xxxx of their adult distribution, using a combined laboratory, field and modeling approach. -
Hypoxia Tolerance Variance Between Swimming and Resting Striped Bass Morone Saxatilis
Journal of Fish Biology (2015) doi:10.1111/jfb.12735, available online at wileyonlinelibrary.com BRIEF COMMUNICATION Hypoxia tolerance variance between swimming and resting striped bass Morone saxatilis J. A. Nelson* and G. K. Lipkey Towson University, Department of Biological Sciences, 8000 York Road, Towson, MD 21252, U.S.A. (Received 29 June 2014, Accepted 28 May 2015) Individual striped bass Morone saxatilis were each exposed in random order to aquatic hypoxia (10% air saturation) either while swimming at 50% of their estimated critical swimming speed (Ucrit) or while at rest until they lost equilibrium. Individuals were always less tolerant of hypoxia when swimming (P < 0⋅01); the average fish was over five times more tolerant to the same hypoxia exposure whennot swimming. There was no relationship between an individual’s rank order of hypoxia tolerance (HT) under the two flow regimes, suggesting that different factors determine an individual’s HT when atrest than when swimming. © 2015 The Fisheries Society of the British Isles Key words: environmental oxygen concentration; flow; individual; loss of equilibrium. Environmental oxygen concentration [O2] is generally considered a limiting resource for fish (Fry, 1971). As2 [O ] decreases, the difference between maximum metabolic rate (MMR) and resting routine metabolic rate (RMR) or metabolic scope decreases (Claireaux et al., 2000) limiting an animal’s capacity to engage in metabolically expen- sive activities such as swimming and digestion. If an animal exceeds its metabolic scope, energy demand must be met anaerobically. Anaerobic metabolism captures only c. 8% of the energy from food that can be extracted aerobically (Gnaiger, 1993) and is generally not sustainable. -
Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey
20192019 NORTHEASTERNNortheastern Naturalist NATURALIST 26(4):817–834Vol. 26, No. 4 G. Schreiber, P.C. López-Duarte, and K.W. Able Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey Giselle Schreiber1, Paola C. López-Duarte2, and Kenneth W. Able1,* Abstract - Shrimp are critical to estuarine food webs because they are a resource to eco- nomically and ecologically important fish and crabs, but also consume primary production and prey on larval fish and small invertebrates. Yet, we know little of their natural history. This study determined shrimp community composition, seasonality, and life histories by sampling the water column and benthos with plankton nets and benthic traps, respectively, in Great Bay, a relatively unaltered estuary in southern New Jersey. We identified 6 native (Crangon septemspinosa, Palaemon vulgaris, P. pugio, P. intermedius, Hippolyte pleura- canthus, and Gilvossius setimanus) and 1 non-native (P. macrodactylus) shrimp species. These results suggest that the estuary is home to a relatively diverse group of shrimp species that differ in the spatial and temporal use of the estuary and the adjacent inner shelf. Introduction Estuarine ecosystems are typically dynamic, especially in temperate waters, and comprised of a diverse community of resident and transient species. These can include several abundant shrimp species which are vital to the system as prey (Able and Fahay 2010), predators during different life stages (Ashelby et al. 2013, Bass et al. 2001, Locke et al. 2005, Taylor 2005, Taylor and Danila 2005, Taylor and Peck 2004), processors of plant production (Welsh 1975), and com- mercially important bait (Townes 1938). -
Control and Management of Harmful Algal Blooms
This is a repository copy of Control and management of harmful algal blooms. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123767/ Version: Published Version Book Section: Barrington, DJ orcid.org/0000-0002-1486-9247, Xi, X, Coggins, LX et al. (1 more author) (2015) Control and management of harmful algal blooms. In: Botana, LM, Louzao, MC and Vilariño, N, (eds.) Climate Change and Marine and Freshwater Toxins. De Gruyter , Berlin, Germany , pp. 313-358. ISBN 978-3-11-033303-9 https://doi.org/10.1515/9783110333596-012 © 2015 Walter de Gruyter GmbH, Berlin/Boston. Reproduced in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Dani J. -
Annex 9 Guidance on Hazards to the Aquatic Environment
Copyright@United Nations, 2017. All rights reserved A8.5 eerences 1. Patty, (Ed.) 1994). ndustrial Hygiene an oxicology. th Ed. xxx-xx w York: iley- Interscience. 2. Smyth, F., Carpenter, .P., Weil, . and ozzan U. (1954). ange finding xicity data. Arch. nd. Hyg. ccup. ed. 3. Fasey, drick, k d undquis (1987). cute, -day, n -week apour nhalation studies n balen Hazexy Systemol. Fundamental and pplied Toicology. 4. Wyeth, egor, r d ad 1989). valuation of developmen xicity f Globalen Hazexy ystemo n Fischer 344 and w Zealand h abbits. Fundamental and pplied Toicology. 5. Etc. ANNE GUIDAN AZARDS AQUATIC IRONMENT - - Copyright@United Nations, 2017. All rights reserved Annex 9 GUIDANCE ON HAZARDS TO THE AQUATIC ENVIRONMENT Contents Page A9.1 Introduction ..................................................................................................................................... 449 A9.2 The harmonized classification scheme .................................................................................................... 452 A9.2.1 Scope ..................................................................................................................................... 452 A9.2.2 Classification categories and criteria ........................................................................................ 452 A9.2.3 Rationale ................................................................................................................................... 452 A9.2.4 Application .............................................................................................................................. -
Adverse Outcome Pathways and Ecological Risk Assessment: Bridging to Population-Level Effects
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2010 ADVERSE OUTCOME PATHWAYS AND ECOLOGICAL RISK ASSESSMENT: BRIDGING TO POPULATION-LEVEL EFFECTS Vincent J. Kramer Dow AgroSciences, [email protected] Matthew A. Etterson U.S. Environmental Protection Agency Markus Hecker ENTRIX Cheryl A. Murphy Michigan State University Guritno Roesijadi Pacific Northwest National Laboratory See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Kramer, Vincent J.; Etterson, Matthew A.; Hecker, Markus; Murphy, Cheryl A.; Roesijadi, Guritno; Spade, Daniel J.; Spromberg, Julann A.; Wang, Magnus; and Ankley, Gerald T., "ADVERSE OUTCOME PATHWAYS AND ECOLOGICAL RISK ASSESSMENT: BRIDGING TO POPULATION-LEVEL EFFECTS" (2010). Publications, Agencies and Staff of the U.S. Department of Commerce. 217. https://digitalcommons.unl.edu/usdeptcommercepub/217 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Vincent J. Kramer, Matthew A. Etterson, Markus Hecker, Cheryl A. Murphy, Guritno Roesijadi, Daniel J. Spade, Julann A. Spromberg, Magnus Wang, and Gerald T. Ankley This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdeptcommercepub/217 Environmental Toxicology and Chemistry, Vol. 30, No. 1, pp. 64–76, 2011 # 2010 SETAC Printed in the USA DOI: 10.1002/etc.375 Predictive Ecotoxicology Workshop ADVERSE OUTCOME PATHWAYS AND ECOLOGICAL RISK ASSESSMENT: BRIDGING TO POPULATION-LEVEL EFFECTS VINCENT J.