AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank €ƒÂ€ an INTRODUCTION to AQUATIC TOXICOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank €ƒÂ€ an INTRODUCTION to AQUATIC TOXICOLOGY AN INTRODUCTION TO AQUATIC TOXICOLOGY This page intentionally left blank AN INTRODUCTION TO AQUATIC TOXICOLOGY MIKKO NIKINMAA Professor of Zoology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN: 978-0-12-411574-3 For information on all Academic Press publications visit our website at store.elsevier.com Printed and bound in the United States of America 15 16 17 18 10 9 8 7 6 5 4 3 2 1 Contents Preface ix Acknowledgments xi 1. Introduction: What is Aquatic 5. The Most Important Experimental Toxicology? Designs and Organisms in Aquatic Toxicology 1.1âThe History of Aquatic Toxicology 1 1.2âThe Main Present and Future Challenges 4 5.1 âModel Organisms Used 54 1.3âWhat is Measured 5 5.2 Micro- and Mesocosms 54 Relevant Literature and Cited References 16 5.3 Ecosystem Manipulations 60 5.4 Biomonitoring 61 2. What Causes Aquatic Contamination? Relevant Literature and Cited References 62 2.1âIntroduction 20 6. Factors Affecting the Bioavailability 2.2âMetals, Metalloids, and Organometallic of Chemicals Compounds 23 2.3âOther Inorganic Compounds, Including Factors 6.1 Introduction 66 Causing Eutrophication 29 6.2 Pharmacological Bioavailability 66 2.4âOrganic Compounds 29 6.3 Environmental Bioavailability 68 2.5âNanomaterials 35 Relevant Literature and Cited References 71 2.6âRadiation 36 2.7âGenetic Modification 38 Relevant Literature and Cited References 38 7. Chemical Uptake by Organisms 7.1 Introduction 73 3. Principles of Water Purification 7.2âThe Uptake of Ionic (Hydrophilic) Compounds 76 3.1âPrinciples of Wastewater Treatment 41 7.3âThe Uptake of Lipophilic 3.2âDisinfection Steps for Generating Household Compounds 78 Water 44 Relevant Literature and Cited References 79 3.3âSludge Treatment 45 Relevant Literature and Cited References 46 8. Chemical Distribution in Organisms 4. Sources and Transport of Chemicals in Aquatic Systems 8.1 âIntroduction: Distribution of Chemicals in Organisms 81 4.1âThe Major Sources of Pollutants 48 8.2 Storage Sites of Chemicals in Organisms 82 4.2 âTransport of Pollutants in the Environment 50 8.3âCellular Distribution of Chemicals 83 Relevant Literature and Cited References 51 Relevant Literature and Cited References 84 v vi CONTENTS 9. Detoxification 13. Interactions between Chemicals 9.1âBiotransformation of Organic Compounds 88 13.1âLack of Interacting Effects 9.2âDetoxification by Forming Non-Harmful (Additive Toxicity) 157 Complexes 94 13.2âAgonism (potentiation, synergism) 159 9.3âDetoxification by Compartmentalization 97 13.3 Antagonism 162 Relevant Literature and Cited 13.4âHas Potentiation or Inhibition of Toxicity by References 97 Chemical Interactions been Demonstrated in Natural Environments? 163 Relevant Literature and Cited 10. Excretion of Compounds from References 163 Organisms 10.1 Introduction 100 14. Acute and Chronic Toxicity 10.2 Cellular Excretion 101 14.1âIntroduction 165 10.3âExcretion from Gills 102 14.2âDifferentiating between General Stress 10.4âExcretion from the Kidney and Other Responses and Specific Acute Responses to Excretory Organs 106 Pollutants 166 10.5âExcretion in Bile Via the Intestine 107 14.3 âTime Courses of Toxicant Responses 168 10.6âExcretion from Multicellular Plants 14.4âWhat Signifies a Chronic oxicantT (Including Algae) 109 Response 170 Relevant Literature and Relevant Literature and Cited References 171 Cited References 109 15. Interactions Between Natural 11. Effects on Organisms Environmental Factors and Toxicity 11.1â‘Omics in Aquatic Toxicology— Ecotoxicogenomics 112 15.1âTemperature 174 11.2 Genotoxicity 121 15.2âOxygen 176 11.3 Oxidative Stress 124 15.3âSalinity 179 11.4âEffects on Reproduction 130 15.4âOther Abiotic Stresses 180 11.5 Neurotoxicity 133 15.5âCompetition and Predation 181 11.6âEffects on Energy Metabolism 134 Relevant Literature and Cited References 183 11.7 Membrane Effects 136 11.8âApoptosis and Necrosis 138 16. Effects of Chemicals on Aquatic 11.9 Immunotoxicology 139 Populations 11.10âEffects on Development 141 11.11âTeratogenesis and 16.1âIntroduction 186 Carcinogenesis 142 16.2âEpidemiology 188 11.12âBehavioral Effects 143 16.3âDemographic Effects 190 Relevant Literature and 16.4âPopulation Genetics 191 Cited References 144 Relevant Literature and Cited References 194 12. Bioindicators and Biomarkers 17. Effects of Chemicals on Aquatic 12.1 Bioindicators 147 Communities and Ecosystems 12.2 Biomarkers 149 Relevant Literature and Cited 17.1âIntroduction 198 References 154 17.2âCommunity Ecotoxicology 199 CONTENTS vii 17.3âEcosystem Ecotoxicology 202 18.4âToxicokinetic Modeling 215 Relevant Literature and 18.5âQSAR 215 Cited References 204 18.6 âModeling the Properties of Water Affecting Toxicity (of Metals) 216 18. Modeling Toxicity Relevant Literature and Cited References 217 18.1âIntroduction 208 Glossary 221 18.2âRisk Assessment 209 Index 233 18.3 âModels with Lethality as an End Point 212 This page intentionally left blank Preface Any effects of contaminants on ecosystems in biotic interactions within or between must be caused by their direct effects on one species. Further, while experimental studies or more organisms in the ecosystem. Thus, are mainly retrospective, modeling makes changes in the function (= physiology) of aquatic toxicological predictions possible. an organism or organisms will be behind Consequently, aquatic toxicology is truly any ecotoxicological effects. Consequently, integrative, and I hope that I am able to give understanding the normal physiology of this message to readers of the book. Since the organisms is at the center of all toxicology. book is introductory, I have tried to find a Effluent discharges (and thus the measure- balance between making it possible for any ments of chemical concentrations) are of reader to understand the book and including no toxicological significance if they cause new concepts to make it interesting reading, no effects on any organism. Further, a con- even for aquatic toxicology experts. taminant may cause effects on the genome Because my background is in animal of an organism without phenotypic effects. physiology, the book is biased towards the In such a case, the effect on the genome is animal kingdom. However, I hope that it not toxicological. Even though this premise becomes clear to the reader that effects on emphasizes the role of functional changes in prokaryotes, fungi, plants, and algae are individual organisms, it is pointed out that equally important components of aquatic interactions between organisms, and between toxicology. Which group of organisms natural environmental and toxicant-induced receives most emphasis depends mainly changes, occur whenever toxicant responses on the interests of the writer. Regardless of of organisms in an ecosystem are considered. the group that receives the most attention, For example, it is emphasized that many of the basic principles of aquatic toxicology the effects of toxicants in an ecosystem are are the same. However, as my approach to indirect: the actual toxic effect is on a species toxicology is biological, the work may be other than the one that is seen to respond. difficult for any reader without previous The response takes place because of changes biological knowledge. ix This page intentionally left blank Acknowledgments My thanks go first and especially to my see. Regardless of their final fate,
Recommended publications
  • OECD Guidance Document Number 24: Acute Oral Toxicity Testing
    Unclassified ENV/JM/MONO(2001)4 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 23-Jul-2001 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE Unclassified ENV/JM/MONO(2001)4 JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY OECD SERIES ON TESTING AND ASSESSMENT Number 24 GUIDANCE DOCUMENT ON ACUTE ORAL TOXICITY TESTING English - Or. English JT00111082 Document complet disponible sur OLIS dans son format d’origine Complete document available on OLIS in its original format ENV/JM/MONO(2001)4 2 ENV/JM/MONO(2001)4 OECD Environment, Health and Safety Publications Series on Testing and Assessment No 24 GUIDANCE DOCUMENT ON ACUTE ORAL TOXICITY TESTING Environment Directorate ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Paris June 2001 3 ENV/JM/MONO(2001)4 Also published in the Series on Testing and Assessment No. 1, Guidance Document for the Development of OECD Guidelines for Testing of Chemicals (1993; reformatted 1995) No. 2, Detailed Review Paper on Biodegradability Testing (1995) No. 3, Guidance Document for Aquatic Effects Assessment (1995) No. 4, Report of the OECD Workshop on Environmental Hazard/Risk Assessment (1995) No. 5, Report of the SETAC/OECD Workshop on Avian Toxicity Testing (1996) No. 6, Report of the Final Ring-test of the Daphnia magna Reproduction Test (1997) No. 7, Guidance Document on Direct Phototransformation of Chemicals in Water (1997) No. 8, Report of the OECD Workshop on Sharing Information about New Industrial Chemicals Assessment (1997) No. 9, Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application (1997) No.
    [Show full text]
  • Biological Toxins As the Potential Tools for Bioterrorism
    International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins.
    [Show full text]
  • Aquatic Toxicology MEES 743 3 Credits SPRING 2019 (Also Listed As TOX 625)
    Aquatic Toxicology MEES 743 3 credits SPRING 2019 (also listed as TOX 625) Course Objectives / Overview This course will provide students with a broad perspective on the subject INSTRUCTOR DETAILS: of aquatic toxicology. It is a comprehensive course in which a definitive description of basic concepts and principles, laboratory testing and field Faculty Details: situations, as well as examples of typical data and their interpretation and Dr. Carys Mitchelmore use by industry and water resource managers, will be discussed. The fate [email protected] and toxicological action of environmental pollutants will be examined in 410-326-7283 aquatic ecosystems, whole organisms and at the cellular, biochemical and molecular levels. Current and emerging issues will be used as case studies CLASS MEETING DETAILS: throughout the course to illustrate specific ecosystems (e.g. Chesapeake Bay), pollution events (e.g. Deepwater Horizon Oil Spill), particular Date: Monday/Wednesday organisms (e.g. coral reefs) or a specific class of contaminants. Classes Time: 12-1.30pm will consist of lectures by the instructor together with some guest Originating Site: UMCES, CBL speakers in addition to group discussions. IVN bridge number: (800414) Phone call in number: (***) Expected Learning Outcomes Room phone number: CBL, Ed Houde Teaching suite Following completion of this course students will; (1) Have experience applying basic concepts in environmental COURSE TYPE: science, including environmental chemistry, biology and Check all that apply physiology, ecosystem health, management and regulatory issues, ☐ as they relate to pollution of aquatic ecosystems. Foundation (2) Be able to identify a current topic of concern and summarize ☐ Professional Development current data/papers in an oral presentation including directing an ☐ Issue Study Group open discussion with the rest of the class.
    [Show full text]
  • Genetic and Molecular Ecotoxicology: a Research Framework
    Genetic and Molecular Ecotoxicology: A Research Framework Susan Anderson,1 Walter Sadinski,1 Lee Shugart,2 Peter Brussard,3 Michael Depledge,4 Tim Ford,5 JoEllen Hose,6 John Stegeman,7 William Suk,8 Isaac Wirgin,9 and Gerald Wogan0 1Lawrence Berkeley Laboratory, Berkeley, California; 2Oak Ridge National Laboratory, Oak Ridge, Tennessee; 3University of Nevada Reno, Reno, Nevada; 4University of Plymouth, Plymouth, UK; 5Harvard University, Cambridge, Massachusetts; 6 CCidental College, Los Angeles, California; 7Woods Hole Oceanographic Institute, Woods Hole, Massachusetts; 8National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; 9New York University Medical Center, Tuxedo, New York; 10Massachusetts Institute of Technology, Cambridge, Massachusetts Participants at the Napa Conference on Genetic and Molecular Ecotoxicology assessed the status of this field in light of heightened concerns about the genetic effects of exposure to hazardous substances and recent advancements in our capabilities to measure those effects. We present here a synthesis of the ideas discussed throughout the conference, including definitions of important concepts in the field and critical research needs and opportunities. While there were many opinions expressed on these topics, there was general agreement that there are substantive new opportuni- ties to improve the impact of genetic and molecular ecotoxicology on prediction of sublethal effects of exposure to hazardous substances. Future studies should emphasize integration of genetic ecotoxicology, ecological genetics, and molecular biology and should be directed toward improving our understanding of the ecological implications of genotoxic responses. Ecological implications may be assessed at either the population or ecosys- tem level; however, a population-level focus may be most pragmatic.
    [Show full text]
  • Shortcomings of the Laboratory-Derived Median Lethal Concentration for Predicting Mortality in Field Populations: Exposure Duration and Latent Mortality
    Environmental Toxicology and Chemistry, Vol. 23, No. 9, pp. 2147±2153, 2004 q 2004 SETAC Printed in the USA 0730-7268/04 $12.00 1 .00 SHORTCOMINGS OF THE LABORATORY-DERIVED MEDIAN LETHAL CONCENTRATION FOR PREDICTING MORTALITY IN FIELD POPULATIONS: EXPOSURE DURATION AND LATENT MORTALITY YUAN ZHAO* and MICHAEL C. NEWMAN Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, Virginia 23062-1346, USA (Received 15 October 2003; Accepted 9 February 2004) AbstractÐExposure duration and intensity (concentration or dose) determine lethal effects of toxicants. However, environmental regulators have focused on exposure intensity and have considered duration only peripherally. Conventional testing for toxicology tends to ®x exposure time and to use the median lethal concentration (LC50) at that time to quantify mortality. Fixing the exposure duration and selecting the 50% mortality level for reasons of statistical and logistical convenience result in the loss of ecologically relevant information generated at all other times and ignore latent mortality that manifests after the exposure ends. In the present study, we used survival analysis, which is widely employed in other ®elds, to include both time and concentration as covariates and to quantify latent mortality. This was done with two contrasting toxicants, copper sulfate (CuSO4) and sodium pentachlorophenol (NaPCP). Amphipods (Hyalella azteca) were exposed to different toxicant concentrations, and the percentage mortalities were noted both during and after the exposure ended. For CuSO4 at the conventional 48-h LC50 concentrations, the predicted proportions dead after including latent mortality were 65 to 85%, not 50%.
    [Show full text]
  • Harmful Algal Blooms (Habs) and Public Health: Progress and Current Challenges
    Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges Edited by Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer Printed Edition of the Special Issue Published in Toxins www.mdpi.com/journal/toxins Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer (Eds.) Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges This book is a reprint of the Special Issue that appeared in the online, open access journal, Toxins (ISSN 2072-6651) from 2014–2015 (available at: http://www.mdpi.com/journal/toxins/special_issues/HABs?sort=asc). Guest Editors Lesley V. D’Anglada U.S. Environmental Protection Agency USA Elizabeth D. Hilborn United States Environmental Protection Agency USA Lorraine C. Backer National Center for Environmental Health USA Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Chao Xiao 1. Edition 2016 MDPI • Basel • Beijing • Wuhan • Barcelona ISBN 978-3-03842-155-9 (Hbk) ISBN 978-3-03842-156-6 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of physical copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents List of Contributors ............................................................................................................ VII About the Guest Editors......................................................................................................... X Preface Reprinted from: Toxins 2015, 7, 4437-4441 http://www.mdpi.com/2072-6651/7/11/4437 ....................................................................
    [Show full text]
  • European Centre for Ecotoxicology and Toxicology of Chemicals
    EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC at a glance 2 Purpose 3 Values 3 Vision 3 Mission 3 Approach 3 Membership 4 ECETOC Member Companies 4 Membership benefits 5 Message from the Chairman 6 ECETOC Board of Administration 7 Report from the Secretary General 8 Science Programme 10 Foreword from the Scientific Committee Chairman 10 ECETOC revises its science strategy 11 Summary of the 2011 Science Programme 12 Highlights of 2011 15 Task forces established 16 Task forces completed 18 Workshops 21 Symposia and other meetings 24 Science Awards 28 Long-range Research Initiative 29 Communication 31 Publications 31 Online communication 32 External Representation 32 Members of the Scientific Committee 34 Members of the Secretariat 34 Finance 35 Abbreviations 36 ECETOC I European Centre for Ecotoxicology and Toxicology of Chemicals I Annual Report 2011 I page 2 Introduction Membership Message Board of Report from Science Science Long-range Communication Members of Finance Abbreviations from the Administration the Secretary Programme Awards Research the Scientific Chairman General Initiative Committee Established in 1978, ECETOC is Europe’s leading industry association for developing and promoting top quality science in human and environmental risk assessment of chemicals. Members include the main companies with interests in the manufacture and use of chemicals, biomaterials and pharmaceuticals, and organisations active in these fields. ECETOC is the scientific forum where member company experts meet and co-operate with government and academic scientists, to evaluate and assess the available data, identify gaps in knowledge and recommend research, and publish critical reviews on the ecotoxicology and toxicology of chemicals, biomaterials and pharmaceuticals.
    [Show full text]
  • Toxicity and Assessment of Chemical Mixtures
    Toxicity and Assessment of Chemical Mixtures Scientific Committee on Health and Environmental Risks SCHER Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Scientific Committee on Consumer Safety SCCS Toxicity and Assessment of Chemical Mixtures The SCHER approved this opinion at its 15th plenary of 22 November 2011 The SCENIHR approved this opinion at its 16th plenary of 30 November 2011 The SCCS approved this opinion at its 14th plenary of 14 December 2011 1 Toxicity and Assessment of Chemical Mixtures About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee shall provide opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non- food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).
    [Show full text]
  • ECETOC Guidance on Dose Selection
    ECETOC Guidance on Dose Selection Technical Report No. 138 EUROPEAN CENTRE OFOR EC TOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Technical Report No. 138 Brussels, March 2021 ISSN-2079-1526-138 (online) ECETOC TR No. 138 1 ECETOC Guidance on Dose Selection 224504 ECETOC Technical Report No. 138 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals Rue Belliard 40, B-1040 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 138 2 ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Table of Contents 1. SUMMARY 6 2. INTRODUCTION, BACKGROUND AND PRINCIPLES 9 2.1. Background and Principles 9 2.2. Current Regulatory Framework and Guidance 10 2.2.1. Historical perspectives and the evolution of test guidelines 10 2.2.2.
    [Show full text]
  • Wildlife Toxicology: Environmental Contaminants and Their National and International Regulation" (2012)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2012 Wildlife Toxicology: Environmental Contaminants and Their aN tional and International Regulation K. Christiana Grim Center for Species Survival, Smithsonian Conservation Biology Institute Anne Fairbrother EcoSciences Barnett A. Rattner U.S. Geological Survey, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Grim, K. Christiana; Fairbrother, Anne; and Rattner, Barnett A., "Wildlife Toxicology: Environmental Contaminants and Their National and International Regulation" (2012). USGS Staff -- Published Research. 969. http://digitalcommons.unl.edu/usgsstaffpub/969 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in New Directions in Conservation Medicine: Applied Cases in Ecological Health, edited by A. Alonso Aguirre, Richard S. Ostfield, and Peter Daszak (New York: Oxford University Press, 2012). Authors K. Christiana Grim, D.V.M. Research Associate Center for Species Survival Smithsonian Conservation Biology Institute Front Royal, Vrrginia Anne Fairbrother, D.V.M., M.S., Ph.D. Senior Managing Scientist EcoSciences Exponent Seattle, Washington Barnett A. Rattner, Ph.D. Ecotoxicologist U.S. Geological Survey Patuxent Wildlife Research Center Beltsville Laboratory Beltsville, Maryland WILDLIFE TOXICOLOGY Environmental Contaminants and Their National and International Regulation K. Christiana Grim, Anne Fairbrother, and Barnett A.
    [Show full text]
  • (Vol 1): in Vitro Cytotoxicity Test Methods for Estimating Acute Oral
    In Vitro Cytotoxicity Test Methods for Estimating Acute Oral Systemic Toxicity Background Review Document Volume 1 of 2 Prepared by The National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) National Institute of Environmental Health Sciences (NIEHS) P.O. Box 12233 Mail Drop: EC-17 Research Triangle Park, NC 27709 November 2006 NIH Publication No. 07-4518 National Institute of Environmental Health Sciences National Institutes of Health U.S. Public Health Service Department of Health and Human Services This document is available electronically at: http://iccvam.niehs.nih.gov/methods/invitro.htm Printed: 11/30/2006 In Vitro Cytotoxicity Test Methods BRD Table of Contents November 2006 TABLE OF CONTENTS APPENDICES.................................................................................................................. xiii LIST OF FIGURES .......................................................................................................... xvi LIST OF TABLES...........................................................................................................xvii LIST OF ACRONYMS AND ABBREVIATIONS ...........................................................xx ACKNOWLEDGMENTS................................................................................................ xxv PREFACE........................................................................................................................xxix EXECUTIVE SUMMARY...........................................................................................
    [Show full text]
  • The Dose Makes the Poison
    CHAPTER 1 THE DOSE MAKES THE POISON hich would you prefer to drink—a cup of caffeine or a cup of trichloroethylene? Chances are good that your response was “caf- Wfeine.” Caffeine occurs naturally in coffee, tea, and chocolate, and it is added to sodas and other types of drinks and foods. Trichloroethylene, on the other hand, is a solvent used to dissolve grease, and it is also a common ingredient in glues, paint removers, and cleaning fluids. Trichloroethylene does not occur naturally in the environment, but it is sometimes found as a pollut- ant in groundwater and surface water. So, which would be better to drink? Believe it or not, caffeine is more poisonous than trichloroethylene. At low concentrations, caffeine is used as a food additive because of its effects as a stimulant—it helps people to stay awake and to feel lively. However, at concentrations higher than those found in food products, caffeine can cause insomnia, dizziness, headaches, vomit- ing, and heart problems. In studies of laboratory animals, high doses of caf- feine have caused birth defects and cancer. Does this mean you should think twice about reaching for that cup of Toxicity indicates cocoa or tea? No, there’s more to the story than that. What it does mean is how poisonous a that many common substances found in food and drinks are toxic, or poison- substance is to ous, if you eat or drink large enough quantities. The amount of caffeine in a biological organisms. normal human diet does not cause illness, but just 50 times this amount is enough to be fatal.
    [Show full text]