Behavioral Analysis of Microphallus Turgidus Cercariae in Relation to Microhabitat of Two Host Grass Shrimp Species (Palaemonetes Spp.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trematoda: Microphallidae)
and Proceedings of the Royal Society ojTasmania, Volume 122(2), 1988 119 A STUDY OF THE LIFE HISTORY OF MICROPHALLUS PA,RAGR,APSI SMITH 1983 (TREMATODA: MICROPHALLIDAE) by P. J. Bell (with three tables and four text-figures) BELL, P. J" t9g8 (31:x): A study of the life history of Microphallus paragrapsi Smith 1983 (Trematoda : Microphallidae), Pap, Proc. R. Soc. Tasm. 122(2): 119,·125, ISSN 0080-4703. 43 Waterloo Crescem, Battery Point, Tasmania, Australia 7000; formerly Department of Zoology, University of Tasmania. Metacercariae of the micropha\lid trematode Microphallus paragrapsi Smith 1983 were found in r.he nervous system of the smooth pebble crab Philyra laevis (Bell 1855). Sporocysts of M. paragrapsi were found in the hepatopancreas of the intertidal gastropod Assiminea brazieri (Tenison Woods 1876). Under laboratory conditions, cercariae were found to emerge from the snail host and invade the intertidal crab P, iaevis, where they subsequently encysted within the nerves innervating the legs and claws. Adults of M. para/irapsi were found in the gut of the Pacific gull Lams pacificus (Latham 18(1). The life history of M. paragrapsi is very similar to the life history of the related species Microphallus pachygrapsi Deblock & Prevo! 1969. Key Words: Microphallus paragrapsi, life-history, microphaIHd, crab, Tasmania. INTRODUCTION 200 crabs examined throughout the study period, none were infected by M. paragrapsi and only one In 1982, during a study of parasites of the crab was found to be infected with a single cyst of smooth pebble crab Philyra laevis (Bell 1855), the trematode Maritrema eroliae Yamaguti 1939. metacercariae were found in the nervous system of Metacercarial cysts were dissected free of crabs from a number of localities in Tasmania. -
Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts. -
And Interspecific Competition Among Helminth
Available online at www.sciencedirect.com International Journal for Parasitology 38 (2008) 1435–1444 www.elsevier.com/locate/ijpara Intra- and interspecific competition among helminth parasites: Effects on Coitocaecum parvum life history strategy, size and fecundity Cle´ment Lagrue *, Robert Poulin Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin 9054, New Zealand Received 5 February 2008; received in revised form 4 April 2008; accepted 7 April 2008 Abstract Larval helminths often share intermediate hosts with other individuals of the same or different species. Competition for resources and/ or conflicts over transmission routes are likely to influence both the association patterns between species and the life history strategies of each individual. Parasites sharing common intermediate hosts may have evolved ways to avoid or associate with other species depending on their definitive host. If not, individual parasites could develop alternative life history strategies in response to association with particular species. Three sympatric species of helminths exploit the amphipod Paracalliope fluviatilis as an intermediate host in New Zea- land: the acanthocephalan Acanthocephalus galaxii, the trematode Microphallus sp. and the progenetic trematode Coitocaecum parvum. Adult A. galaxii and C. parvum are both fish parasites whereas Microphallus sp. infects birds. We found no association, either positive or negative, among the three parasite species. The effects of intra- and interspecific interactions were also measured in the trematode C. parvum. Both intra- and interspecific competition seemed to affect both the life history strategy and the size and fecundity of C. parvum. Firstly, the proportion of progenesis was higher in metacercariae sharing their host with Microphallus sp., the bird parasite, than in any other situation. -
Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to the Microhabitat of Grass Shrimp (Palaemonetes Spp.)
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.) Patricia O'Leary Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation O'Leary, Patricia, "Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.)" (2010). Electronic Theses and Dissertations. 743. https://digitalcommons.georgiasouthern.edu/etd/743 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Behavioral analysis of a digenetic trematode cercaria ( Microphallus turgidus ) in relation to the microhabitat of grass shrimp ( Palaemonetes spp.) by Patricia O’Leary (Under the Direction of Oscar J. Pung) Abstract The hydrobiid snail and grass shrimp hosts of the microphallid trematode Microphallus turgidus are found in specific microhabitats. The primary second intermediate host of this parasite is the grass shrimp Palaemonetes pugio. The behavior of trematode cercaria often reflects the habitat and behavior of the host species. The objective of my study was to examine the behavior of M. turgidus in relation to the microhabitat selection of the second intermediate host. To do so, I established a behavioral ethogram for the cercariae of M. turgidus and compared the behavior of these parasites to the known host behavior. -
University of Copenhagen
Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Lefebvre, Francois; Fredensborg, Brian Lund; Armstrong, Amy; Hansen, Ellen; Poulin, Robert Published in: Hydrobiologia Publication date: 2005 Document version Early version, also known as pre-print Citation for published version (APA): Lefebvre, F., Fredensborg, B. L., Armstrong, A., Hansen, E., & Poulin, R. (2005). Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Hydrobiologia, 545. Download date: 28. Sep. 2021 Hydrobiologia (2005) 545:65–73 Ó Springer 2005 DOI 10.1007/s10750-005-2211-0 Primary Research Paper Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Franc¸ ois Lefebvre*, Brian Fredensborg, Amy Armstrong, Ellen Hansen & Robert Poulin Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand (*Author for correspondence: E-mail: [email protected]) Received 10 November 2004; in revised form 26 January 2005; accepted 13 February 2005 Key words: Amphipoda, Trematoda, Coitocaecum parvum, Microphallus sp., reproduction, mate choice Abstract The potential impact of parasitism on pairing patterns of the amphipod Paracalliope fluviatilis was investigated with regard to the infection status of both males and females. Two helminth parasites com- monly use this crustacean species as second intermediate host. One of them, Coitocaecum parvum,isa progenetic trematode with an egg-producing metacercaria occasionally reaching 2.0 mm in length, i.e. more than 50% the typical length of its amphipod host. The amphipod was shown to exhibit the common reproductive features of most precopula pair-forming crustaceans, i.e. larger males and females among pairs than among singles, more fecund females in pairs, and a trend for size-assortative pairing. -
Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey
20192019 NORTHEASTERNNortheastern Naturalist NATURALIST 26(4):817–834Vol. 26, No. 4 G. Schreiber, P.C. López-Duarte, and K.W. Able Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey Giselle Schreiber1, Paola C. López-Duarte2, and Kenneth W. Able1,* Abstract - Shrimp are critical to estuarine food webs because they are a resource to eco- nomically and ecologically important fish and crabs, but also consume primary production and prey on larval fish and small invertebrates. Yet, we know little of their natural history. This study determined shrimp community composition, seasonality, and life histories by sampling the water column and benthos with plankton nets and benthic traps, respectively, in Great Bay, a relatively unaltered estuary in southern New Jersey. We identified 6 native (Crangon septemspinosa, Palaemon vulgaris, P. pugio, P. intermedius, Hippolyte pleura- canthus, and Gilvossius setimanus) and 1 non-native (P. macrodactylus) shrimp species. These results suggest that the estuary is home to a relatively diverse group of shrimp species that differ in the spatial and temporal use of the estuary and the adjacent inner shelf. Introduction Estuarine ecosystems are typically dynamic, especially in temperate waters, and comprised of a diverse community of resident and transient species. These can include several abundant shrimp species which are vital to the system as prey (Able and Fahay 2010), predators during different life stages (Ashelby et al. 2013, Bass et al. 2001, Locke et al. 2005, Taylor 2005, Taylor and Danila 2005, Taylor and Peck 2004), processors of plant production (Welsh 1975), and com- mercially important bait (Townes 1938). -
A Study of the Life History of Microphallus Paragrapsi Smith 1983 (Trematoda : Microphallidae)
Papers and Proceedings of the Royal Society of Tasmania, Volume 122(2), 1988 ll9 A STUDY OF THE LIFE HISTORY OF MICROPHALLUS PARAGRAPSI SMITH 1983 (TREMATODA : MICROPHALLIDAE) by P. J. Bell (with three tables and four text-figures) BELL, P. J., 1988 (31:x): A study of the life history of Microphal/us paragrapsi Smith 1983 (Trematoda : Microphallidae). Pap. Proc. R. Soc. Tasm. 122(2): 119-125. https://doi.org/10.26749/rstpp.122.2.119 ISSN 0080--4703. 43 Waterloo Crescent, Battery Point, Tasmania, Australia 7000; formerly Department of Zoology, University of Tasmania. Metacercariae of the microphallid trematode Microphal/us paragrapsi Smith 1983 were found in the nervous system of the smooth pebble crab Philyra /aevis (Bell 1855). Sporocysts of M. paragrapsi were found in the hepatopancreas of the intertidal gastropod Assiminea hrazieri (Tenison Woods 1876). Under laboratory conditions, cercariae were found to emerge from the snail host and invade the intertidal crab P. laevis, where they subsequently encysted within tbe nerves innervating the legs and claws. Adults of M. paragrapsi were found in the gut of the Pacific gull Larus pacificus (Latham 1801). The life history of M. paragrapsi is very similar to the life history of the related species Microphallus pachygrapsi Deblock & Prevot 1969. Key Words: Microphallus paragrapsi, life-history, microphallid, crab, Tasmania. INTRODUCTION 200 crabs examined throughout the study period, none were infected by M. paragrapsi and only one In 1982, during a study of parasites of the crab was found to be infected with a single cyst of smooth pebble crab Philyra laevis (Bell 1855), the trematode Maritrema eroliae Yamaguti 1939. -
Salinity Tolerances for the Major Biotic Components Within the Anclote River and Anchorage and Nearby Coastal Waters
Salinity Tolerances for the Major Biotic Components within the Anclote River and Anchorage and Nearby Coastal Waters October 2003 Prepared for: Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, Florida 33761 Prepared by: Janicki Environmental, Inc. 1155 Eden Isle Dr. N.E. St. Petersburg, Florida 33704 For Information Regarding this Document Please Contact Tampa Bay Water - 2535 Landmark Drive - Clearwater, Florida Anclote Salinity Tolerances October 2003 FOREWORD This report was completed under a subcontract to PB Water and funded by Tampa Bay Water. i Anclote Salinity Tolerances October 2003 ACKNOWLEDGEMENTS The comments and direction of Mike Coates, Tampa Bay Water, and Donna Hoke, PB Water, were vital to the completion of this effort. The authors would like to acknowledge the following persons who contributed to this work: Anthony J. Janicki, Raymond Pribble, and Heidi L. Crevison, Janicki Environmental, Inc. ii Anclote Salinity Tolerances October 2003 EXECUTIVE SUMMARY Seawater desalination plays a major role in Tampa Bay Water’s Master Water Plan. At this time, two seawater desalination plants are envisioned. One is currently in operation producing up to 25 MGD near Big Bend on Tampa Bay. A second plant is conceptualized near the mouth of the Anclote River in Pasco County, with a 9 to 25 MGD capacity, and is currently in the design phase. The Tampa Bay Water desalination plant at Big Bend on Tampa Bay utilizes a reverse osmosis process to remove salt from seawater, yielding drinking water. That same process is under consideration for the facilities Tampa Bay Water has under design near the Anclote River. -
Development of a Denaturing High-Performance Liquid Chromatography (DHPLC) Assay to Detect Parasite Infection in Grass Shrimp Palaemonetes Pugio
Original Article Fish Aquat Sci 15(2), 107-115, 2012 Development of a Denaturing High-Performance Liquid Chromatography (DHPLC) Assay to Detect Parasite Infection in Grass Shrimp Palaemonetes pugio Sang-Man Cho* Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 573-701, Korea Abstract In developing a useful tool to detect parasitic dynamics in an estuarine ecosystem, a denaturing high-performance liquid chroma- tography (DHPLC) assay was optimized by cloning plasmid DNA from the grass shrimp Palaemonetes pugio, and its two para- sites, the trematode Microphallus turgidus and bopyrid isopod Probopyrus pandalicola. The optimal separation condition was an oven temperature of 57.9°C and 62-68% of buffer B gradient at a flow rate of 0.45 mL/min. A peptide nucleic acid blocking probe was designed to clamp the amplification of the host gene, which increased the amplification efficiency of genes with low copy numbers. Using the DHPLC assay with wild-type genomic, the assay could detect GC Gram positive bacteria and the bopyrid iso- pod (P. pandalicola). Therefore, the DHPLC assay is an effective tool for surveying parasitic dynamics in an estuarine ecosystem. Key words: Liquid chromatography assay, Grass shrimp Palaemonetes pugio,Trematode Microphallus turgidus, Bopyrid iso- pod Probopyrus pandalicola Introduction Tremendous endeavors have been carried out to moni- in accelerating the breakdown of detritus, and also transferring tor coastal ecosystem pollution. Because the impact on hu- energy from producer to the top levels of the estuarine food mans and ecosystems is ambiguous, biomonitoring such as chain (Anderson, 1985). It also serves as a detritus decompos- the ‘Mussel Watch’ Program (Kim et al., 2008), is a power- er, primary and secondary consumer, as well as crucial dietary ful method to measure the dynamics of lethal chemicals in component for carnivore fish, birds, mammals, and larger the environment. -
Impact of a Microphallid Trematode on the Behaviour and Survival of Its Isopod Intermediate Host: Phylogenetic Inheritance?
Parasitol Res (2005) 97: 242–246 DOI 10.1007/s00436-005-1435-2 ORIGINAL PAPER Ellen K Hansen Æ Robert Poulin Impact of a microphallid trematode on the behaviour and survival of its isopod intermediate host: phylogenetic inheritance? Received: 29 April 2005 / Accepted: 13 June 2005 / Published online: 5 July 2005 Ó Springer-Verlag 2005 Abstract The extent to which the ability of parasites to acanthocephalans, modification of host behaviour alter host behaviour is phylogenetically inherited as appears to be an ancestral trait now shown by most if not opposed to independently evolved has received little all extant species (Moore 1984), in other groups only attention. We investigated the impact of an undescribed certain genera or species are capable of changing host species of Microphallus on the behaviour and survival behaviour. Several authors (e.g. Moore and Gotelli 1990, of its host, the freshwater isopod Austridotea annectens, 1996; Poulin 1995, 1998) have argued that we could better to determine if it produced effects comparable to those understand the evolution of host behaviour modification induced by other trematodes of this genus. There was by parasites, whether it is adaptive or not, by placing it no difference between the vertical distribution and within a comparative or phylogenetic context. responses to light of infected isopods and those of Among trematodes, the ability to modify host behav- uninfected isopods. In contrast, we found that infected iour is widespread though not universal (Moore 2002). isopods were more active swimmers than uninfected For instance, consider the trematode genus Microphallus isopods, and that they failed to show the evasive (family Microphallidae). -
The Evolutionary Ecology of Complex Lifecycle Parasites: Linking Phenomena with Mechanisms
CORE Metadata, citation and similar papers at core.ac.uk Provided by Stirling Online Research Repository OPEN Heredity (2015) 114, 125–132 & 2015 Macmillan Publishers Limited All rights reserved 0018-067X/15 www.nature.com/hdy REVIEW The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms SKJR Auld and MC Tinsley Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups—from single-celled bacteria to multicellular flatworms—yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host–parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. -
Arctic Biodiversity Assessment
528 Arctic Biodiversity Assessment Protostrongylus stilesi, a lung nematode typical in Dall’s sheep Ovis dalli from the Brooks Range and Alaska Range of the western North American Arctic, and in muskoxen Ovibos moschatus in the Brooks Range and Arctic Coastal Plain of Alaska and Yukon Territories, Canada. Shown is the tail end of an adult male with characteristic copulatory structures which are important in diagnosis of these miniscule parasites. Photo: E.P. Hoberg. 50 µm 529 Chapter 15 Parasites Lead Authors Eric P. Hoberg and Susan J. Kutz Contributing Authors Joseph A. Cook, Kirill Galaktionov, Voitto Haukisalmi, Heikki Henttonen, Sauli Laaksonen, Arseny Makarikov and David J. Marcogliese Contents Summary ..............................................................530 I’ve seen that in caribou. Just a couple of years ago, 15.1. Introduction .....................................................530 » every slice through it, you’d see about 50 little white 15.2. Parasites and their importance in the North ......................532 round things. We were wondering what that was, so we 15.3. Status and knowledge ...........................................533 checked it out, and it was a tapeworm. The whole body 15.4. Ecosystem components in the North .............................534 was completely filled with tapeworms. Yeah. It’s unbe- lievable how they could actually still move and run and 15.5. Terrestrial ecosystems ............................................536 15.5.1. Mammals ..................................................536 their whole body just completely filled with tapeworms. 15.5.1.1. Ungulates ..........................................536 Village elder, Sachs Harbour, Canada, as related to S.J. Kutz. 15.5.1.2. Rodents ...........................................538 15.5.2. Terrestrial birds .............................................539 15.6. Freshwater ecosystems ..........................................539 15.6.1. Fishes ......................................................540 He’s saying that when we go harvesting caribou, moose, 15.6.2.