Solar Forecast

Total Page:16

File Type:pdf, Size:1020Kb

Solar Forecast Solar Forecast: How much damage and disruption might the next solar AHEAD cycle bring? On January 20, 2005, Earth was pummeled by a barrage of en- ergetic protons from the Sun that resulted in the most intense ground-level radiation in a half century. Eight months later, our star belched several powerful fl ares, one of them the fourth BY C. RENÉE JAMES largest in the past 20 years. Had its associated torrent of charged particles been directed earthward, we would have likely expe- rienced widespread power outages, disruptions in communica- tions, and, for any astronauts who happened to be out on a spacewalk, enough exposure to cause radiation sickness. All this during the Sun’s “quiet time.” For 250 years observers have kept counts of spots on the Sun, tallies that allow us to track how much commotion is taking place on our star’s surface as it waxes and wanes throughout a roughly 11-year-long cycle of activity. Far from being curious blemishes, sunspots are the most obvious clue of the Sun’s state. More sunspots mean more active cycles. The Sun is never really completely quiescent, but during each cycle’s minimum the solar disk can be blank for long stretches (as was the case earlier this year). Right now we are witnessing the dying gasps of the 23rd recorded solar cycle, one that even at its maximum was less active than the previous two cycles. Cycle 24, which should begin later this year, might be far more impressive, perhaps 50% stronger than the one just ending. On the other hand, it might be 40% weaker. The problem is that solar scientists are getting mixed signals from our star. NASA / TRACE TEAM NASA / TRACE Playing the Odds TIP OF THE ICEBERG This active region on More than a bet is riding on the strength of the upcoming activity the Sun, recorded in extreme-ultraviolet light cycle. Despite the Sun’s seemingly remote distance of 150 million by the TRACE spacecraft, triggered a solar kilometers (93 million miles), what happens on its face is con- fl are on January 20, 2005, that one scientist nected intimately with what happens here and throughout the called “in many ways one of the most spec- solar system. Activities that we take for granted — uninterrupted tacular of the Space Age.” Its rapid onset electrical power, polar-routed airline fl ights, satellite-based com- and the torrent of high-energy protons it munications, and GPS navigation, to name just a few — can be unleashed have underscored Earth’s vulner- profoundly affected by inclement space weather. And if the fore- ability to solar outbursts. cast for a more severe cycle holds true, we’ll face a higher prob- 24 July 2007 Sky & Telescope ©2007 New Track Media LLC. All rights reserved. IC OBSERVATORY IC PHOTO-ILLUSTRATION: PATRICIA GILLIS-COPPOLA; AURORA: MICHAEL KLENSCH / WWW.AGLOWPHOTO.COM; SUN COMPOSITE: SOLAR AND HELIOSPHER SUN COMPOSITE: KLENSCH / WWW.AGLOWPHOTO.COM; MICHAEL AURORA: GILLIS-COPPOLA; PATRICIA PHOTO-ILLUSTRATION: S&T ©2007 New Track Media LLC. All rights reserved. Sky & Telescope July 2007 25 psolar forecast TROUBLE BREWING When a Jupiter-size Sun (masked) Sun (masked) sunspot group rolled into view in October 2003, scientists knew something big might happen. And it did: on October 28th, this region spawned the fourth most intense X-ray outburst ever recorded — with Earth directly in the line of fi re. Visible Disk X-ray Flares Coronal Mass Ejections DODGED BULLET Six days later, the same active region exploded with an even more powerful fl are, the strongest on record. Fortunately, its pulse of radiation — and the fast-moving coronal mass ejection (CME) that it spawned — struck Earth with NASA / SOHO CONSORTIUM (8) NASA / SOHO CONSORTIUM only a glancing blow. ability of being hit by powerful outbursts like those in 2005. Sun is not completely clear. Many scientists assert that solar These are the sorts of events that scientists really wish fl ares provide their acceleration, while others point to the they could predict. Given the potential impact on our shock waves associated with coronal mass ejections. health and societal infrastructure, the more time we have Regardless, all those X-rays and SEPs take very little to prepare for them, the better. Unlike many terrestrial- time to reach Earth. “By the time you see them happening weather disasters, however, individual space-weather there,” comments Thomas Bogdan, director of the SEC, events are currently unpredictable. “they’re happening here.” Scientists can only guess, not “It’s fair to say that space-weather forecasting has only predict, when they’ll occur, by tracking the confi gurations just reached the level that terrestrial-weather forecasting of solar magnetic fi elds most likely to result in fl ares or SEP was at in the late 1950s,” comments Douglas Biesecker of events. Frighteningly, this kind of probabilistic risk analysis NOAA’s Space Environment Center in Boulder, Colorado. would not have deterred astronauts from venturing outside Scientists currently wield predictive power only for the safety of the International Space Station on January 20, the slowest of space-weather events, coronal mass ejections. 2005. Fortunately, they stayed in that day. CMEs are great bubbles of plasma containing billions of tons of charged particles that the Sun sporadically spews Like a Hurricane into space. They can reach Earth in as little as 18 hours, So what exactly is at stake when the Sun gets agitated? The sometimes “attacking” Earth’s magnetosphere with enough most obvious and widespread problems arise from the mas- ferocity to cause severe geomagnetic storms. sive CMEs. These can create geomagnetic storms, which By contrast, fl ares in the solar atmosphere can release in- are every bit as powerful as their name implies. According tense bursts of ultraviolet and X-ray energy with speed-of- to Biesecker, “Geomagnetic storms are to space weather light consequences. X-class fl ares, the most extreme cases, what hurricanes are to terrestrial weather. Pretty much can cause power-grid failures at high latitudes, communica- everything that could be affected is.” tion blackouts, satellite failures, and signifi cant radiation The good news is that CMEs — like hurricanes — give us enhancements throughout near-Earth space. This energy plenty of warning before plowing into us. The bad news is can also energize our atmosphere, causing it to expand and that CMEs’ charged particles come in dense swarms, and so create more drag on satellites in low-altitude orbits. the list of “everything that could be affected” is quite long. Also dangerous are abrupt releases of solar energetic particles For example, the frenzied electromagnetic activity dur- (SEPs), which travel at nearly the speed of light and arrive at ing a severe geomagnetic storm can induce strong electrical Earth in just minutes. What accelerates them away from the currents in long pipelines and cables (as illustrated on page 29). Currents coursing through oil pipelines can prema- EBB AND FLOW Since the late 1700s astronomers have used counts turely corrode the metal and ultimately cause leaks that are of sunspots (below) to gauge the Sun’s state during its 11-year activity costly to locate and repair. For terrestrial power supplies, cycle. The upcoming interval, Cycle 24, may be either considerably more this added rapidly varying power can destroy transformers 300 or less active than usual (see page 30), depending on which of two and create widespread blackouts at higher latitudes. leading models proves correct. But fast-moving charged particles aren’t the cause for 200 100 Sunspot number 0 17701780 1790 1800 1810SOURCE: D. HATHAWAY / NASA 1820 26 July 2007 Sky & Telescope ©2007 New Track Media LLC. All rights reserved. Sun-Earth Science Goes Global Fifty years ago, the world’s Earth works. A global scien- off on February 19th during According to executive scientists combined forces tifi c eff ort is once again being ceremonies in Vienna, Austria. director Joseph Davila (NASA/ during the International Geo- mustered for the International Sponsored by the United GSFC), the IHY is trying to physical Year, a campaign to Heliophysical Year (www Nations, the 24-month-long forge lasting partnerships learn more about how Planet .ihy2007.org), which kicked IHY will explore how the Sun among investigators in many infl uences the electromag- disciplines and in geographic netic environments around locales, such as Africa, where Earth and other planets. One few studies have been done major thrust will be to set up before. “We want the science magnetometers and other in- to continue after IHY has struments in as many diff erent ended,” he notes. countries as possible. — J. Kelly Beatty concern. The ultraviolet light and X-rays associated with an intense fl are can ionize our upper atmosphere, sometimes crippling radio communication for hours. Since a burst of light is our fi rst clue that a fl are has occurred, we have ab- solutely no way to prepare for these radio blackouts. Another concern is the satellite-based Global Positioning System, which is usually accurate to within meters but can be rendered unable to pinpoint positions to within 50 me- ters following a strong solar fl are. The reason is that fl ares generate prodigious radio energy in addition to their X-ray and ultraviolet outbursts. Once these radio waves reach Earth, they act as noise that can degrade the signals trans- mitted by GPS and other navigational systems. Only recently have researchers realized how susceptible GPS receivers are to stormy space weather. A solar fl are last December 6th created an outburst of radio noise 10 times stronger than any previously known. “At its peak,” notes Dale Gary, a physicist at the New Jersey Institute of Tech- nology, “the burst produced 20,000 times more radio emis- sion than the entire rest of the Sun.
Recommended publications
  • Solar Orbiter and Sentinels
    HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20
    [Show full text]
  • The Living with a Star Geospace Missions
    SSC03-IX-2 The Living With a Star Geospace Missions Andrew W. Lewin and Laurence J. Frank Johns Hopkins University Applied Physics Laboratory (JHU/APL) 11100 Johns Hopkins Road Laurel, MD 20723 443-778-8961 [email protected] Abstract The Geospace Missions are the second major mission element in NASA’s Living With a Star program. The missions are designed to help scientists understand, and eventually predict, the response of the geo- space system to solar activity. The investigations will be carried out by two pairs of spacecraft and a high-altitude far ultraviolet (FUV) imager. This observatory network provides the first opportunity to make multi-point in situ measurements of the ionosphere-thermosphere (I-T) system and the radiation belts (RB) with coordinated measurements between the two regions. The first two spacecraft are the I-T Storm Probes (I-TSP), which will study mid-latitude ionospheric vari- ability. They will be launched on a Taurus-class launch vehicle into a 450km circular orbit at 60° inclina- tion. The second pair of spacecraft is the RB Storm Probes (RBSP) that will study the dynamics of radiation belt ions and electrons. These spacecraft will be launched on a Delta II-class launch vehicle into a low inclination, near-GTO orbit. The launch timelines are phased to enable all four spacecraft to make observations at or near solar maximum when solar and geospace activity are the most frequent and severe. The FUV imager will fly on a mission of opportunity in conjunction with I-TSP and RBSP as a payload on a high-altitude spacecraft.
    [Show full text]
  • The Sun-Earth Connected System
    Living With A Star (LWS) SEC MISSIONS AND PLANS Solar Terrestrial Probes (STP) Madhulika Guhathakurta([email protected]) SUN-EARTH CONNECTIONS DIVISION NASA, OFFICE OF SPACE SCIENCE Alpbach Summer School, July 23- August 1, 2002 M. Guhathakurta NASA The Sun-Earth Connected Headquarters7/23/02-8/1/02 System Planet Variable Star Varying • Radiation • Solar Wind • Energetic Particles Interacting • Solar Wind • Energetic Particles Interacting Interacting • Magnetic Fields • Plasmas • Magnetic fields • Energetic Particles • Atmosphere QUESTIONS: • Plasma • Energetic Particles • How and why does the Sun vary? • How do the Earth and planets respond? • What are the impacts on humanity? Summer School Alpbach M. Guhathakurta NASA Sun-Earth System -- Driven by 11 Year Solar Cycle Headquarters7/23/02-8/1/02 Solar Maximum: • Increased flares, solar mass ejections, radiation belt enhancements. • 100 Times Brighter X-ray Emissions 0.1% Brighter in Visible • Increased heating of Earth’s upper atmosphere; solar event induced ionospheric effects. Declining Phase, Solar Mnimum: • High speed solar wind streams, solar mass ejections cause geomagnetic storms. Solar Flares Geomagnetic Storms Year 98 00 02 04 06 08 10 12 14 16 18 Summer School Alpbach M. Guhathakurta NASA Why Do We Care? Headquarters7/23/02-8/1/02 • Solar Variability Affects Human Technology, Humans in Space, and Terrestrial Climate. • The Sphere of the Human Environment Continues to Expand Above and Beyond Our Planet. - Increasing dependence on space-based systems - Permanent presence of humans in Earth orbit and beyond Summer School Alpbach M. Guhathakurta NASA Living With a Star: Objectives Headquarters7/23/02-8/1/02 LWS is a systems study of three linked questions: • How and why does the Sun vary? • How does the Earth respond? • What are the impacts on life and society? - Understand solar variability and its effects on space and Earth environments.
    [Show full text]
  • Mission Design for NASA's Inner Heliospheric Sentinels and ESA's
    International Symposium on Space Flight Dynamics Mission Design for NASA’s Inner Heliospheric Sentinels and ESA’s Solar Orbiter Missions John Downing, David Folta, Greg Marr (NASA GSFC) Jose Rodriguez-Canabal (ESA/ESOC) Rich Conde, Yanping Guo, Jeff Kelley, Karen Kirby (JHU APL) Abstract This paper will document the mission design and mission analysis performed for NASA’s Inner Heliospheric Sentinels (IHS) and ESA’s Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551. 1.1 Baseline Sentinels Mission Design The measurement requirements for the Inner Heliospheric Sentinels (IHS) call for multi- point in-situ observations of Solar Energetic Particles (SEPs) in the inner most Heliosphere. This objective can be achieved by four identical spinning spacecraft launched using a single launch vehicle into slightly different near ecliptic heliocentric orbits, approximately 0.25 by 0.74 AU, using Venus gravity assists. The first Venus flyby will occur approximately 3-6 months after launch, depending on the launch opportunity used. Two of the Sentinels spacecraft, denoted Sentinels-1 and Sentinels-2, will perform three Venus flybys; the first and third flybys will be separated by approximately 674 days (3 Venus orbits). The other two Sentinels spacecraft, denoted Sentinels-3 and Sentinels-4, will perform four Venus flybys; the first and fourth flybys will be separated by approximately 899 days (4 Venus orbits). Nominally, Venus flybys will be separated by integer multiples of the Venus orbital period.
    [Show full text]
  • Sdo Sdt Report.Pdf
    Solar Dynamics Observatory “…to understand the nature and source of the solar variations that affect life and society.” Report of the Science Definition Team Solar Dynamics Observatory Science Definition Team David Hathaway John W. Harvey K. D. Leka Chairman National Solar Observatory Colorado Research Division Code SD50 P.O. Box 26732 Northwest Research Assoc. NASA/MSFC Tucson, AZ 85726 3380 Mitchell Lane Huntsville, AL 35812 Boulder, CO 80301 Spiro Antiochos Donald M. Hassler David Rust Code 7675 Southwest Research Institute Applied Physics Laboratory Naval Research Laboratory 1050 Walnut St., Suite 426 Johns Hopkins University Washington, DC 20375 Boulder, Colorado 80302 Laurel, MD 20723 Thomas Bogdan J. Todd Hoeksema Philip Scherrer High Altitude Observatory Code S HEPL Annex B211 P. O. Box 3000 NASA/Headquarters Stanford University Boulder, CO 80307 Washington, DC 20546 Stanford, CA 94305 Joseph Davila Jeffrey Kuhn Rainer Schwenn Code 682 Institute for Astronomy Max-Planck-Institut für Aeronomie NASA/GSFC University of Hawaii Max Planck Str. 2 Greenbelt, MD 20771 2680 Woodlawn Drive Katlenburg-Lindau Honolulu, HI 96822 D37191 GERMANY Kenneth Dere Barry LaBonte Leonard Strachan Code 4163 Institute for Astronomy Harvard-Smithsonian Naval Research Laboratory University of Hawaii Center for Astrophysics Washington, DC 20375 2680 Woodlawn Drive 60 Garden Street Honolulu, HI 96822 Cambridge, MA 02138 Bernhard Fleck Judith Lean Alan Title ESA Space Science Dept. Code 7673L Lockheed Martin Corp. c/o NASA/GSFC Naval Research Laboratory 3251 Hanover Street Code 682.3 Washington, DC 20375 Palo Alto, CA 94304 Greenbelt, MD 20771 Richard Harrison John Leibacher Roger Ulrich CCLRC National Solar Observatory Department of Astronomy Chilton, Didcot P.O.
    [Show full text]
  • An Experimental Plasma Dynamo Program for Investigations of Fundamental Processes in Heliophysics
    A Science White Paper in response to the 2012 Heliophysics Decadal Survey \Solar & Heliospheric Physics" and \Solar Wind-Magnetospheric Interactions" An Experimental Plasma Dynamo Program for Investigations of Fundamental Processes in Heliophysics Benjamin Brown (U Wisc & CMSO), Cary Forest (U Wisc & CMSO), Mark Nornberg (U Wisc & CMSO), Ellen Zweibel (U Wisc & CMSO), Fausto Cattaneo (U Chicago & CMSO) and Steven Cowley (Imperial College & CCFE, England) Plasma experiments in laboratory settings offer the opportunity to address fundamental aspects of the solar dynamo and magnetism in the solar atmosphere. Experiments are currently under construction that can investigate the self-generation of magnetic fields and related processes in large, weakly magnetized, fast flowing, and hot (conducting) plasmas. These and future experiments will probe questions that are of crucial importance to heliophysics in the solar interior, atmosphere and wind. Uniquely, laboratory plasma experiments coupled with theoretical explorations can serve to calibrate the simulation codes which are being used to understand the solar dynamo, magnetic reconnection and flares in the solar atmosphere, the nature of CMEs, and the interactions between planetary magnetospheres and the solar wind. Laboratory plasma experiments are likely to contribute new understanding complementary to the traditional observational and modeling approach normally used by space physicists. We argue here that ground-based laboratory experiments have direct connections to NASA based missions and NSF programs, and that a small investment in laboratory heliophysics may have a high payoff. We will use the Madison Plasma Dynamo Experiment (MPDX)1 as an example, but advocate here for broad involvement in community-scale plasma experiments. Fundamental plasma processes in heliophysics and connection to NASA missions and NSF programs The 22-year solar cycle stands out as one of the most remarkable and enigmatic examples of magnetic self-organization in nature.
    [Show full text]
  • Solar Sentinels: Report of the Science and Technology Definition Team
    NASA/TM—2006–214137 Solar Sentinels: Report of the Science and Technology Definition Team August 2006 EXECUTIVE SUMMARY Executive Summary: The Living With a Star Sentinels Mission NASA’s Sentinels mission is a multispacecraft mis- sion that will study () the acceleration and transport of solar energetic particles (SEPs) and (2) the initia- tion and evolution of coronal mass ejections (CMEs) and interplanetary shocks in the inner heliosphere. As presently envisioned, the Sentinels mission com- prises () a constellation of four identically instru- mented Inner Heliospheric Sentinels to make in-situ measurements of the plasma, energetic particle, and fields environment as close to the Sun as 0.25 AU as well as multipoint remote-sensing observations of solar X-ray, radio, gamma-ray, and neutron emis- sions; (2) a Near-Earth Sentinel in Sun-synchronous orbit for ultraviolet and white-light observations of the corona; and (3) a Farside Sentinel in heliocen- tric orbit at AU to measure the photospheric mag- Intense solar energetic particle (SEP) events will present a netic field from positions 60° to 20° ahead of the serious health hazard for astronauts on future expeditions Earth. During the 3-year nominal mission, Sentinels to the Moon and Mars. Sentinels science will enable the observations will be supplemented by observations development of a forecasting capability for SEP events. both from other spacecraft such as the Solar Terres- to ensure that the Sentinels mission described in trial Relations Observatories (STEREO), the Solar this report can achieve the scientific objectives Dynamics Observatory (SDO), and Solar Orbiter established by the STDT and can be implemented and from ground-based observatories such as the with no new technology development.
    [Show full text]
  • Solar Orbiter: Exploring the Sun-Heliosphere Connection
    Solar Orbiter: Exploring the Sun-Heliosphere Connection Mission White Paper Submitted to the Decadal Survey Panel on Solar and Heliospheric Physics [From the Solar Orbiter Assessment Study Report, ESA/SRE(2009)5] 2010-11-08 O. C. St. Cyr, NASA-GSFC, [email protected] , 301-286-2575 R. Marsden, ESA-ESTEC R. A. Howard, Naval Research Laboratory D. Hassler, Southwest Research Institute G. Mason, Applied Physics Laboratory S. Livi, Southwest Research Institute We live in the extended atmosphere of the Sun, a region of space known as the heliosphere. Understanding the connections and the coupling between the Sun and the heliosphere is of fundamental importance to addressing the major scientific questions outlined in the 2010 NASA Science Plan for the Science Mission Directorate Heliophysics Division: What causes the Sun to vary? How do the Earth and the heliosphere respond? What are the impacts on humanity? The heliosphere also represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth, or to study from astronomical distances. The results from missions such as Helios, Ulysses, Yohkoh, SOHO, TRACE and RHESSI, as well as the recently launched Hinode, STEREO, and SDO missions, have formed the foundation of our understanding of the solar corona, the solar wind, and the three-dimensional heliosphere. Each of these missions had a specific focus, being part of an overall strategy of coordinated solar and heliospheric research. However, an important element of this strategy has yet to be implemented. None of these missions have been able to fully explore the interface region where the solar wind is born and heliospheric structures are formed with sufficient instrumentation to link solar wind structures back to their source regions at the Sun.
    [Show full text]
  • The PHOIBOS Mission Probing Heliospheric Origins with an Inner Boundary Observing Spacecraft
    The PHOIBOS mission Probing Heliospheric Origins with an Inner Boundary Observing Spacecraft A proposal to the European Space Agency (ESA) for a probe of the Solar Corona and inner Heliosphere in response to the call for “Cosmic Vision” Co-Proposers Milan Maksimovic LESIA & CNRS Observatoire de Paris Place Jules Janssen 92195 Meudon cedex France Tel : 331 4507 7669 Fax : 337 4507 2806 Email: [email protected] Marco Velli Jet Propulsion Laboratory, USA & University of Firenze, Italy 4800 Oak Grove Drive Pasadena, California 91109 USA Tel : 1 818 354 4369 Email: [email protected] [email protected] The general scientific objectives of the PHOIBOS mission are being supported by a large scientific community distributed throughout the world. The PHOIBOS mission concept is proposed and sup- ported by the following people : Vassilis Angelopoulos28, Thierry Appourchaux1, Bruno Bavassano2, Stuart D. Bale3, Matthieu Ber- thomier4, Lapo Bettarini33, Douglas Biesecker38, Lars Blomberg5, Peter Bochsler6, Volker Both- mer7, Jean-Louis Bougeret8, Andrew Breen39, Carine Briand8, Roberto Bruno9, Vincenzo Car- bone10, Patrick Canu4, Thomas Chust4, Jean-Marc Defise11, Thierry Dudok de Wit12, Luca Del Zan- na33, Anders Eriksson13, Silvano Fineschi35, Lyndsay Fletcher14, Keith Goetz15, Roland Grappin41, Antonella Greco10, Shadia Habbal36, Don Hassler16, Bernd Heber17 , Petr Hellinger18 , Tim Hor- bury19 , Karine Issautier8, Justin Kasper20, Ludwig Klein8, Craig Kletzing21, Säm Krucker3, Vladi- mir Krasnoselskikh12, William Kurth21, Rosine
    [Show full text]
  • Solar Impulsive Energetic Electron Events
    Solar Impulsive Energetic Electron Events by Linghua Wang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Robert P. Lin, Chair Professor Stuart D. Bale Professor Imke de Pater Fall 2009 Solar Impulsive Energetic Electron Events Copyright 2009 by Linghua Wang Abstract Solar Impulsive Energetic Electron Events by Linghua Wang Doctor of Philosophy in Physics University of California, Berkeley Professor Robert P. Lin, Chair The Sun is capable of accelerating ions from ~ tens of keV up to tens of GeV and electrons from ~ tens of eV up to hundreds of MeVs in transient events such as flares and fast coronal mass ejections (CMEs). The energized particles escaping into the interplanetary medium are referred to as Solar Energetic Particle (SEP) events. The great majority of SEP events are impulsive SEP events that are dominated by ~1-100 keV electrons and ~MeV/nucleon ion emissions, with enhanced 3He/4He ratios up to 104 times the coronal values (also called electron/3He-rich SEP events). This thesis is focused on solar impulsive energetic electron events, the electron part of impulsive SEP events, using electron observations from the 3-D Plasma and Energetic Particle instrument (3DP) on the WIND spacecraft near the Earth. First, I present the first comprehensive statistical study of solar energetic electron events over almost one solar cycle. I find that the occurrence rate of solar electron events shows a strong solar-cycle variation; after correction for the background effect, the estimated occurrence frequency exhibits a good power-law distribution, and the estimated occurrence rate near the Earth is ~1000/year at solar maximum and ~30/year at solar minimum for the instrumental sensitivity (~2.9×10-4 (cm2 s str eV)-1 for the 40 keV channel) of WIND/3DP, about one order of magnitude larger than the observed occurrence rate.
    [Show full text]
  • Scientific Goals Achievable with Radiation Monitor Measurements on Board Gravitational Wave Interferometers in Space
    Amaldi 9 and NRDA 2011 IOP Publishing Journal of Physics: Conference Series 363 (2012) 012045 doi:10.1088/1742-6596/363/1/012045 Scientific goals achievable with radiation monitor measurements on board gravitational wave interferometers in space C. Grimani1,2, C. Boatella3, M. Chmeissani4, M. Fabi1, N. Finetti2,5, A. Lobo6, I. Mateos6 1DiSBeF, Universit`adegli Studi di Urbino “Carlo Bo”, Urbino (PU), Italy 2Istituto Nazionale di Fisica Nucleare, Florence, Italy 3Centre National d’Etudes Spatiales, Toulouse, France 4Institut de F´ısica d’Altes Energies (IFAE), Barcelona, Spain 5Dipartimento di Fisica, Universit`adegli Studi dell’Aquila, L’Aquila, Italy 6Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain E-mail: [email protected] Abstract. Cosmic rays and energetic solar particles constitute one of the most important sources of noise for future gravitational wave detectors in space. Radiation monitors were designed for the LISA Pathfinder (LISA-PF) mission. Similar devices were proposed to be placed on board LISA and ASTROD. These detectors are needed to monitor the flux of energetic particles penetrating mission spacecraft and inertial sensors. However, in addition to this primary use, radiation monitors on board space interferometers will carry out the first multipoint observation of solar energetic particles (SEPs) at small and large heliolongitude intervals and at very different distances from Earth with minor normalization errors. We illustrate the scientific goals that can be achieved in solar physics and space weather studies with these detectors. A comparison with present and future missions devoted to solar physics is presented. 1. Introduction When the gravitational wave hunting moved from Earth to space, the problem of the control of the noise induced by the environment on the experiments changed completely.
    [Show full text]
  • Solar Terrestrial Relations Observatory (STEREO)
    SSoollaarr TTeerrrreessttrriiaall RReellaattiioonnss OObbsseerrvvaattoorryy ((SSTTEERREEOO)) PPrreessss KKiitt // OOccttoobbeerr 22000066 Contents: NASA Press Release ………………………………………………..…………………………………. 3 Media Services Information ……………………………………………..…………………………….. 5 STEREO Quick Facts ……..………………………….………………………………………………... 7 STEREO Mission/Science Overview ……………………………………………………………........ 8 - What is space weather? - What are coronal mass ejections? - What are solar flares? - What will the 3-D solar images look like? - How does the solar cycle affect STEREO? STEREO & Solar Terrestrial Probes (STP) Program Themes ……………………..................… 10 STEREO Instruments …………………………………………………………………..…………….. 11 - Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) - STEREO/WAVES (S/WAVES) - In-situ Measurements of PArticles and CME Transients (IMPACT) - PLAsma and SupraThermal Ion and Composition (PLASTIC) STEREO Ground & Mission Operations …………………………………………………………… 12 STEREO Orbit Information ………………………………………………………………………….. 13 STEREO Observatory ……………………………………………………………………………….. 15 Launch Vehicle Configuration ……………………………………………………………………….. 16 Launch & Injection into Orbit / Spacecraft Separation ……………………………………………. 17 STEREO Mission Participants: Institutional Responsibilities ….……….…………..……………. 18 Key Personnel………………………………………………….. ….……….…………..……………. 19 STEREO Biographies ………………………………………………………… ……………..…….... 21 Public Affairs Points of Contact Erica Hupp NASA Science Mission 202 358-1237 NASA Headquarters Directorate Rani Gran STEREO Mission
    [Show full text]