From Epigenetic Mechanisms to the Expressed Phenotype

Total Page:16

File Type:pdf, Size:1020Kb

From Epigenetic Mechanisms to the Expressed Phenotype Unraveling Heat Acclimation Memory: From Epigenetic Mechanisms to the Expressed Phenotype Thesis submitted for the degree of ―Doctor of Philosophy‖ By Anna Tetievsky Submitted to the Senate of the Hebrew University of Jerusalem June 2012 This work was carried out under the supervision of: Proffesor Michal Horowitz Abstract Heat acclimation (AC) is a reversible ‘within lifetime‗ phenotypic adaptation to long-term elevations in environmental temperature that evolves via a continuum of temporally varying processes. Successful AC is characterized by enhanced thermal tolerance manifesting as improved endurance and resistance to temperature extremes, collectively delaying the onset of heat injury. Heat acclimation can reinforce or interfere with the ability to combat novel acute stressors. In this way, AC was found to confer protection to a variety of stressors (namely, cross-tolerance) with impaired oxygen supply/oxygen demand ratios. Among these, cross-tolerance between ischemia-reperfusion insult in the heart and hyperoxia in the brain have been extensively studied. The available evidence substantiates that a reprogramming of gene expression and translational processes are essential events in the pathway to heat acclimation. The important hallmarks of AC and AC-mediated cross-tolerance identified to date include enhanced reserves of heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), anti-apoptotic and anti-oxidative pathways, accelerated (vs. non- acclimated) stress-mediated transcriptional activation of these genes and in turn, the heat shock response (HSR). Although the benefits of acclimation are considered transitory, the few published investigations on the time course of AC loss indicate that reacquisition of the acclimated phenotype [re-acclimation-(ReAC)] is more rapid upon return to the hot environment than the time required to acclimate initially. Our previous findings show that the cardiac acclimated phenotype has a molecular memory and regains both acclimatory enhanced performance and cardioprotection after loss of acclimation within only 2 days of exposure to the acclimating conditions. Interestingly, the protein levels of hsp70 and anti-apoptotic bcl-xL were upregulated even after 30 days of deacclimation (DeAC) conditions. Given that the evolvement of AC depends on a reprogramming of gene expression, the dichotomy between the molecular and physiological phenotypes led us to conclude that AC induces a long-lasting, transcriptional program that enables individuals who have undergone an initial AC session to achieve faster ReAC. We hypothesized that AC memory involves upstream epigenetic information that predisposes to rapid reacclimation and cytoprotective memory. In a broad sense, the transfer of epigenetic information is associated with chromatin remodeling via molecular and biochemical processes that maintain the chromatin- DNA package in active or silent states. Post-translational modifications (e.g. lysine acetylation, serine phosphorylation) of the N-terminal tails of histone proteins H3 and H4 that protrude from the nucleosome are the most common forms of chromatin remodeling. Such modifications can be controlled by intracellular signaling and are likely to be important in selective epigenetic tagging when environmental stressors are involved. My goal in this study was twofold: To test our hypothesis that “acclimation memory” stems from epigenetic adaptations and to unravel the mechanisms involved. To exploit the DeAC/ReAC model and discover “core gene clusters” and their master regulators that are possibly involved in the generation of “acclimation memory”. To achieve these goals my specific aims are: 1) To study the transcriptional kinetics of genes of interest: hsp70, hsp90 and hsf1 to validate the hypothesis that transcriptional dynamics is a part of the acclimatory memory repertory. 2) To focus on the molecular and biochemical processes that maintain the chromatin-DNA package in an active state, allowing accessibility and binding of transcription factors to DNA recognition sites. 3) To take a genome-wide approach using a whole rat genome array, to screen for alterations in the expression of genes involved with chromatin remodeling and transcriptional regulation following AC, DeAC, and ReAC. All experiments were conducted on male rats, Rattus norvegicus, divided into five experimental groups: 1. Control rats (C) maintained at normothermic conditions (24 ºC). 2. Heat acclimated for 2 days (AC2d) at 34ºC. 3. Heat acclimated for 30 days (AC) at 34ºC. 4. Deacclimated (DeAC) at normothermic conditions for 30 days (after AC for 30 days). 5. Reacclimated for 2 days (ReAC) after DeAC for 30 days. Because faster transcriptional activation in response to stress is a hallmark of successful acclimation, we studied the kinetics of hsp70 and hsp90 transcription following acute heat stress (HS) at 41º C in all experimental groups. Our results here show that both hsp70 and hsp90, similar to the AC group, exhibit faster (than Control) transcriptional dynamics in the DeAC and ReAC groups, with an mRNA peak of hsp70 at 40 min post-HS and mRNA peak of hsp90 immediately after the heat shock (HS) treatment (0 min post-HS). This is the first evidence that the altered ―acclimated‖ HS response is retained after 30 days at normothermic conditions (DeAC), and also exists at ReAC conditions. This finding supports our hypothesis that faster transcriptional dynamics is part of the memory repertory. Interestingly, the DeAC phenotype is characterized by a mismatch between the greater HSP70 basal mRNA/protein levels and the loss of cardioprotection. One explanation for the dichotomy between the phenotypic-physiological and the genotypic response at DeAC group could stem from the decrease in HSP90 levels in this group. In contrast to the elevated protein HSP70 levels, the DeAC hearts did not display high HSP90 protein or mRNA levels. Given that HSP90 is an essential component in the HS response and the duration of its upregulation is critical to cellular integrity we hypothesized that an inverse relationship between HSP70 and HSP90 in DeAC causes the loss of cardioprotection in DeAC group but does not interfere with predisposition to fast restoration of cardioprotection upon ReAC. As HSPs are essential in the AC process and the HS response, we used these genes as a prototype model for proving the concept that epigenetic mechanisms contribute to cytoprotective memory. Histone acetylation, referred to as euchromatin modification, is associated with active transcription. Hence, to substantiate our hypothesis that ReAC involves the activation of the epigenetic machinery, we first measured the levels of acetylated H4 and phosphorylated H3 (Serine10) in the promoter regions of all the experimental treatments. The rationale for measuring H4 acetylation was based on the report of Thomson et al., (2004), which demonstrated the involvement of H4 acetylation in transcription of HSP70 during heat stress in a mammalian species. We screened H3 acetylation/phosphorylation because of the vast body of evidence supporting its involvement in the HS response in non-mammalian species and its role in stress memory. To confirm the binding of transcription factors to the euchromatin, as an indication of the initiation of transcriptional events, we measured the binding of HSF1 to the heat shock element (HSE) on the HSP70 and HSP90 genes (an essential step in HSP transcription). Our results revealed a profile of chromatin remodeling at the HSE of the promoter site of hsp70 and hsp90 and HSF1 binding, which provides a conceptual model of the cytoprotective memory: (i) At the onset of AC, in an ambient-temperature dependent manner, histone H3 phosphorylation by MSK1 kinase switches on HSF1 binding at the HSE of hsp70 and hsp90, with subsequent histone H4 acetylation by a specific acetyl transferase TIP60 at the HSE of both genes, (ii) The acetylation persists throughout DeAC and ReAC, resulting in constitutive HSF1 binding to the hsp70 promoter, irrespective of the transitions in ambient temperatures (from acclimating temperature (34ºC) to 24ºC during DeAC and again returning to 34ºC during ReAC). In contrast, HSF1 binding to hsp90 is temperature dependent. No HSF1 binding occurs in the DeAC state, despite the maintenance of histone H4 acetylation in the HSE in the promoter area of this gene. HSF1-hsp90 binding requires elevated ambient temperatures. The maintenance of elevated histone H4 acetylation in the hsp90 promoter and constitutively elevated HSP70 reserve during DeAC may facilitate the rapid resumption of HSF1 binding to hsp90 HSE, hsp90 transcript translation and the reformation of a cytoprotective milieu upon ReAC. This investigation delineates, for the first time, the whole-genomic response in a mammalian species during the AC process and also at DeAC and ReAC regimes. From our analyses, we 1) outline the dynamics of the genomic response of different sets of genes in all the experimental groups, thus allowing some perception of the global acclimatory molecular strategy underlying heat acclimation and, 2) discuss the likely pathways leading to the ―molecular memory‖ formation conferred by AC. Our data demonstrate that from a total of 27,342 distinct probes, 651 genes showed a significantly changed transcriptional behavior (either upregulated or downregulated > 1.5 - fold) at least in one of the experimental groups. The clustering by a bioinformatics tool revealed five gene clusters characterized by a significantly identical transcriptional
Recommended publications
  • Refinement and Discovery of New Hotspots of Copy-Number Variation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder Santhosh Girirajan,1,5 Megan Y. Dennis,1,5 Carl Baker,1 Maika Malig,1 Bradley P. Coe,1 Catarina D. Campbell,1 Kenneth Mark,1 Tiffany H. Vu,1 Can Alkan,1 Ze Cheng,1 Leslie G. Biesecker,2 Raphael Bernier,3 and Evan E. Eichler1,4,* Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n ¼ 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n ¼ 1,247, median size 79 kbp, range 3–96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p ¼ 0.01; OR ¼ 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Potential Markers for Type 2 Diabetes Mellitus Via Bioinformatics Analysis
    1868 MOLECULAR MEDICINE REPORTS 22: 1868-1882, 2020 Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis YANA LU1, YIHANG LI1, GUANG LI1* and HAITAO LU2* 1Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100; 2Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China Received March 20, 2019; Accepted January 20, 2020 DOI: 10.3892/mmr.2020.11281 Abstract. Type 2 diabetes mellitus (T2DM) is a multifactorial and cell proliferation’. These candidate genes were also involved in multigenetic disease, and its pathogenesis is complex and largely different signaling pathways associated with ‘PI3K/Akt signaling unknown. In the present study, microarray data (GSE201966) of pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ β-cell enriched tissue obtained by laser capture microdissection and ‘MAPK signaling pathway’, which are highly associated were downloaded, including 10 control and 10 type 2 diabetic with the development of T2DM. Furthermore, a microRNA subjects. A comprehensive bioinformatics analysis of microarray (miR)-target gene regulatory network and a transcription data in the context of protein-protein interaction (PPI) networks factor-target gene regulatory network were constructed based was employed, combined with subcellular location information on miRNet and NetworkAnalyst databases, respectively. to mine the potential candidate genes for T2DM and provide Notably, hsa-miR‑192-5p, hsa-miR‑124-5p and hsa-miR‑335-5p further insight on the possible mechanisms involved. First, appeared to be involved in T2DM by potentially regulating the differential analysis screened 108 differentially expressed expression of various candidate genes, including procollagen genes.
    [Show full text]
  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex
    fnagi-10-00259 August 24, 2018 Time: 10:32 # 1 ORIGINAL RESEARCH published: 27 August 2018 doi: 10.3389/fnagi.2018.00259 Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex Yang Hu1,2,3, Junping Pan1, Yirong Xin1, Xiangnan Mi1, Jiahui Wang1, Qin Gao1 and Huanmin Luo1,3* 1 Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China, 2 Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China, 3 Institute of Brain Sciences, Jinan University, Guangzhou, China Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Edited by: Panteleimon Giannakopoulos, Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 Université de Genève, Switzerland were identified and characterized by high connectivity, module membership, or gene Reviewed by: significance in the blue module. Furthermore, these genes were validated in mice of Suowen Xu, different ages. Mechanically, the potential regulators of blue module were investigated. University of Rochester, United States Maciej J. Lazarczyk, These findings highlight an important role of the blue module and its affiliated genes in Geneva University Hospitals (HUG), the control of normal brain aging, which may lead to potential therapeutic interventions Switzerland for brain aging by targeting the hub genes.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Dynamic Repression by BCL6 Controls the Genome-Wide Liver Response To
    RESEARCH ARTICLE Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis Meredith A Sommars1, Krithika Ramachandran1, Madhavi D Senagolage1, Christopher R Futtner1, Derrik M Germain1, Amanda L Allred1, Yasuhiro Omura1, Ilya R Bederman2, Grant D Barish1,3,4* 1Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States; 2Department of Pediatrics, Case Western Reserve University, Cleveland, United States; 3Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, United States; 4Jesse Brown VA Medical Center, Chicago, United States Abstract Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARa to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high- fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARa-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to
    [Show full text]
  • Cytotoxicity and Genome-Wide Microarray Analysis of Intestinal Smooth Muscle Cells in Response to Hexavalent Chromium Induction
    Zoological Research 34 (E3): E93−E100 DOI:10.11813/j.issn.0254-5853.2013.E3.E93 Cytotoxicity and genome-wide microarray analysis of intestinal smooth muscle cells in response to hexavalent chromium induction Li-Fang JIN, Yuan-Yuan WANG, Zi-Dong ZHANG, Yi-Meng YUAN, Yi-Rui HU, Yang-Feng WEI, * Jian NI College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China Abstract: Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice; however, information on its toxicity on intestinal smooth muscle cells is limited. The present study aimed to assess the in vitro and in vivo toxicological effects of Cr(VI) on intestinal smooth muscle cells. Human intestinal smooth muscle cells (HISM cells) were cultured with different concentrations of Cr(VI) to evaluate effects on cell proliferation ability, oxidative stress levels, and antioxidant system. Furthermore, tissue sections in Cr(VI) exposed rabbits were analyzed to evaluate toxicity on intestinal muscle cells in vivo. Gene chips were utilized to assess differential gene expression profiles at the genome-wide level in 1 μmol/L Cr(VI) treated cells. Intestinal tissue biopsy results showed that Cr(VI) increased the incidences of diffuse epithelial hyperplasia in intestinal jejunum but caused no obvious damage to the structure of the muscularis. Cell proliferation analysis revealed that high concentrations (≥64 μmol/L) but not low concentrations of Cr(VI) (≤16 μmol/L) significantly inhibited the growth of HISM cells. For oxidative stress levels, the expression of reactive oxygen species (ROS) and nitric oxide (NO) was elevated at high concentrations (≥64 μmol/L) but not at low concentrations of Cr(VI) (≤16 μmol/L).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • By Submitted in Partial Satisfaction of the Requirements for Degree of in In
    BCL6 maintains thermogenic capacity of brown adipose tissue during dormancy by Vassily Kutyavin DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________Eric Verdin Chair ______________________________________________________________________________Ajay Chawla ______________________________________________________________________________Ethan Weiss ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2019 by Vassily Kutyavin ii Dedicated to everyone who has supported me during my scientific education iii Acknowledgements I'm very grateful to my thesis adviser, Ajay Chawla, for his mentorship and support during my dissertation work over the past five years. Throughout my time in his lab, I was always able to rely on his guidance, and his enthusiasm for science was a great source of motivation. Even when he was traveling, he could easily be reached for advice by phone or e- mail. I am particularly grateful for his help with writing the manuscript, which was probably the most challenging aspect of graduate school for me. I am also very grateful to him for helping me find a postdoctoral fellowship position. Ajay's inquisitive and fearless approach to science have been a great inspiration to me. In contrast to the majority of scientists who focus narrowly on a specific topic, Ajay pursued fundamental questions across a broad range of topics and was able to make tremendous contributions. My experience in his lab instilled in me a deep appreciation for thinking about the entire organism from an evolutionary perspective and focusing on the key questions that escape the attention of the larger scientific community. As I move forward in my scientific career, there is no doubt that I will rely on him as a role model.
    [Show full text]