Juvenile Osteochondrosis of the Cuneiform Bones N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Skeletal Foot Structure
Foot Skeletal Structure The disarticulated bones of the left foot, from above (The talus and calcaneus remain articulated) 1 Calcaneus 2 Talus 3 Navicular 4 Medial cuneiform 5 Intermediate cuneiform 6 Lateral cuneiform 7 Cuboid 8 First metatarsal 9 Second metatarsal 10 Third metatarsal 11 Fourth metatarsal 12 Fifth metatarsal 13 Proximal phalanx of great toe 14 Distal phalanx of great toe 15 Proximal phalanx of second toe 16 Middle phalanx of second toe 17 Distal phalanx of second toe Bones of the tarsus, the back part of the foot Talus Calcaneus Navicular bone Cuboid bone Medial, intermediate and lateral cuneiform bones Bones of the metatarsus, the forepart of the foot First to fifth metatarsal bones (numbered from the medial side) Bones of the toes or digits Phalanges -- a proximal and a distal phalanx for the great toe; proximal, middle and distal phalanges for the second to fifth toes Sesamoid bones Two always present in the tendons of flexor hallucis brevis Origin and meaning of some terms associated with the foot Tibia: Latin for a flute or pipe; the shin bone has a fanciful resemblance to this wind instrument. Fibula: Latin for a pin or skewer; the long thin bone of the leg. Adjective fibular or peroneal, which is from the Greek for pin. Tarsus: Greek for a wicker frame; the basic framework for the back of the foot. Metatarsus: Greek for beyond the tarsus; the forepart of the foot. Talus (astragalus): Latin (Greek) for one of a set of dice; viewed from above the main part of the talus has a rather square appearance. -
Investigating the Genetic and Genomic Basis of Osteochondrosis in Thoroughbred Horses from Australia and New Zealand
Investigating the genetic and genomic basis of osteochondrosis in Thoroughbred horses from Australia and New Zealand Kao Castle The University of Sydney A thesis submitted to the Faculty of Veterinary Science, The University of Sydney, in fulfilment of the requirements for the Degree of Doctor of Philosophy December 2012 i Declaration I declare that the work presented in this thesis is, to the best of my knowledge and belief, original, except as acknowledged in the text, and that the material has not been submitted, either in whole or in part, for a degree at this or any other university. (Kao Castle) 17 December 2012 ii Statement of Contributions The identities of the studs and horses that participated in the research described in this thesis are protected by confidentiality agreements. On this basis, the names of stud staff and veterinarians who provided data for this research are not listed as authors or named in the acknowledgements, although their input was invaluable. Chapter 2, Skeletal lesions and injuries in Australasian Thoroughbred weanling and yearling radiographs (draft manuscript). Castle K., Tammen I., Thomson P.C., Jeffcott L.B., Raadsma H.W. and Nicholas F.W. • Dr Tammen supervised components of this work, contributed to discussions, and provided feedback on the presentation of results. • Associate Professor Thomson provided advice on statistical techniques to compare results between the weanling and yearling populations, and provided feedback on the presentation of results. • Professors Jeffcott and Raadsma contributed to planning the data collection strategy, and provided feedback on the presentation of results. • Emeritus Professor Nicholas supervised components of this work, contributed to discussions and provided extensive feedback on the presentation of the results, and edited the manuscript. -
Carpals and Tarsals of Mule Deer, Black Bear and Human: an Osteology Guide for the Archaeologist
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2009 Carpals and tarsals of mule deer, black bear and human: an osteology guide for the archaeologist Tamela S. Smart Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Anthropology Commons Recommended Citation Smart, Tamela S., "Carpals and tarsals of mule deer, black bear and human: an osteology guide for the archaeologist" (2009). WWU Graduate School Collection. 19. https://cedar.wwu.edu/wwuet/19 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWu. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. -
Osteochondrosis and Arthrosis in Pigs Ii
Acta vet. scand, 1974, 15, 26-42. From the Department of Pathology, Veterinary College of Norway, Oslo. OSTEOCHONDROSIS AND ARTHROSIS IN PIGS II. INCIDENCE IN BREEDING ANIMALS By Trygve Grendalen GR0NDALEN, TRYGVE: Osteochondrosis and arthrosis in pigs. 11. Incidence in breeding animals. Acta vet. scand. 1974, 15, 26-42. - Joint and bone lesions in breeding pigs are described on the background of an investdgatlon involving 174 sows and 155 boars from 7 months to 4% years old . Lesions, which consisted pre dominantly of arthrosis, degeneration of intervertebral discs, spon dylosis and epiphyseal separations, were demonstrated frequently in both sexes. Osteochondrosis, a condition previously demonstrated frequently in slaughter pigs, had either completely healed, undergone repair or developed into an arthrosis by the time the animal reached an age of about 1% years. Whereas a higher incidence of arthrosis of the intervertebral joints was found in boars than in sows, the reverse was true as regards degeneration of the intervertebral discs and anchylosing spondylosis. Possible reasons for this are discussed. Norwegian pigs show a higher incidence of lesions in the lumbar region of the vertebral column than has been described up to the present time in other countries. os teo c h 0 n d r 0 sis; art h r 0 sis; pig. A high incidence of osteochondrosis in joints and epiphyseal plates, and arthrosis, especially in the lumbar intervertebral joints, the distomedial hock joints, the elbow and stifle joint in pigs up to 120 kg live weight has been previously described (Grpndalen 1974). A review of the literature showed that osteo chondrosisand archrosis are widespread in pigs in various coun tries. -
Osteochondrosis – Primary Epiphyseal (Articular/Subchondral) Lesion Can Heal Or Can Progress
60 120 180 1 distal humeral condyles 2 medial epicondyle 3 proximal radial epiphysis 4 anconeal process Lab Ret study N=1018 . Normal . Affected . Total 688 (67.6%) . Total 330 (32.4%) . Male 230 (62.2%) . Male 140 (37.8%) . Female 458 (70.7%) . Female 190 (29.3%) Affected dogs N=330 1affected site - 250 (75.7%) 2 affected sites - 68 (20.6%) 3 affected sites - 12 (3.6%) immature skeletal diseases denis novak technique for skeletal radiography tissue < 12 cm “non-grid” (“table-top”) technique “high detail” system radiation safety diagnosis X – rays examination Ultrasound CT bilateral lesions - clinical signs ? unilateral present > one type of lesion 2ry arthrosis Common Osteochondrosis – primary epiphyseal (articular/subchondral) lesion can heal or can progress Osteochondritis dissecans – free articular fragment will progress Arthrosis Osteochondrosis talus / tarsus Lumbosacral OCD Lumbosacral OCD Inflammatory diseases Panosteitis – non infectious Hypertrophic osteodystrophy (HOD) – perhaps infectious Osteomyelitis - infectious Panosteitis New medullary bone Polyostotic Multiple lesions in one bone Symmetrical or nonsymmetrical Sclerotic pattern B I L A T E R A L periosteal new bone forms with chronicity Cross sections of a tibia different locations Hypertrophic osteodystrophy (HOD) Dogs are systemically ill, febrile, anorectic, reluctant to walk most will recover Radiographic changes of HOD . Polyostotic . Metaphyseal . Symmetrical . Changes of lesion Early Mid Late lytic “plates” in acute case HOD - 4 m ret – lesions are present -
1019 2 Feb 11 Weisbrode FINAL.Pages
The Armed Forces Institute of Pathology Department of Veterinary Pathology Wednesday Slide Conference 2010-2011 Conference 19 2 February 2011 Conference Moderator: Steven E. Weisbrode, DVM, PhD, Diplomate ACVP CASE I: 2173 (AFIP 2790938). Signalment: 3.5-month-old, male intact, Chow-Rottweiler cross, canine (Canis familiaris). History: This 3.5-month-old male Chow-Rottweiler mixed breed dog was presented to a veterinary clinic with severe neck pain. No cervical vertebral lesions were seen radiographically. The dog responded to symptomatic treatment. A week later the dog again presented with neck pain and sternal recumbency. The nose was swollen, and the submandibular and popliteal lymph nodes were moderately enlarged. The body temperature was normal. A complete blood count (CBC) revealed a marked lymphocytosis (23,800 lymphocytes/uI). Over a 3-4 hour period there was a noticeable increase in the size of all peripheral lymph nodes. Treatment included systemic antibiotics and corticosteroids. The dog became ataxic and developed partial paralysis. The neurologic signs waxed and waned over a period of 7 days, and the lymphadenopathy persisted. The peripheral blood lymphocyte count 5 days after the first CBC was done revealed a lymphocyte count of 6,000 lymphocytes/uI. The clinical signs became progressively worse, and the dog was euthanized two weeks after the initial presentation. Laboratory Results: Immunohistochemical (IHC) staining of bone marrow and lymph node sections revealed that tumor cells were negative for CD3 and CD79α. Gross Pathology: Marked generalized lymph node enlargement was found. Cut surfaces of the nodes bulged out and had a white homogeneous appearance. The spleen was enlarged and meaty. -
The Appendicular Skeleton the Appendicular Skeleton
The Appendicular Skeleton Figure 8–1 The Appendicular Skeleton • Allows us to move and manipulate objects • Includes all bones besides axial skeleton: – the limbs – the supportive girdles 1 The Pectoral Girdle Figure 8–2a The Pectoral Girdle • Also called the shoulder girdle • Connects the arms to the body • Positions the shoulders • Provides a base for arm movement 2 The Clavicles Figure 8–2b, c The Clavicles • Also called collarbones • Long, S-shaped bones • Originate at the manubrium (sternal end) • Articulate with the scapulae (acromial end) The Scapulae Also called shoulder blades Broad, flat triangles Articulate with arm and collarbone 3 The Scapula • Anterior surface: the subscapular fossa Body has 3 sides: – superior border – medial border (vertebral border) – lateral border (axillary border) Figure 8–3a Structures of the Scapula Figure 8–3b 4 Processes of the Glenoid Cavity • Coracoid process: – anterior, smaller •Acromion: – posterior, larger – articulates with clavicle – at the acromioclavicular joint Structures of the Scapula • Posterior surface Figure 8–3c 5 Posterior Features of the Scapula • Scapular spine: – ridge across posterior surface of body • Separates 2 regions: – supraspinous fossa – infraspinous fossa The Humerus Figure 8–4 6 Humerus • Separated by the intertubercular groove: – greater tubercle: • lateral • forms tip of shoulder – lesser tubercle: • anterior, medial •Head: – rounded, articulating surface – contained within joint capsule • Anatomical neck: – margin of joint capsule • Surgical neck: – the narrow -
Osteochondrosis
Osteochondrosis (Abnormal Bone Formation in Growing Dogs) Basics OVERVIEW • Long bones (such as the humerus, radius and ulna in the foreleg and the femur and tibia in the rear leg) have three sections: the end of the bone, known as the “epiphysis”; the shaft or long portion of the bone, known as the “diaphysis”; and the area that connects the end and the shaft of the bone, known as the “metaphysis” • The metaphysis is the area where bone growth occurs in puppies; the long bones in the body grow in length at specific areas known as “growth plates”; these areas usually continue to produce bone until the bones are fully developed, at which time, no further growth is needed; the growth plates then “close” and become part of the hard bone • Bone is formed by the replacement of calcified cartilage at the growth plates; the bone-forming cells (known as “osteoblasts”) form bone on the cartilage structure; this process is known as “endochondral ossification” • “Osteochondrosis” is a disorder of bone formation in the growth plates (areas where bone grows in length in the young pet) of the bone; it is a disease process in growing cartilage, primarily characterized by a disturbance of the change from cartilage to bone (known as “endochondral ossification”) during bone development that leads to excessive retention of cartilage GENETICS • Multiple genes are involved (known as “polygenetic transmission”)—expression determined by an interaction of genetic and environmental factors • Heritability index—depends on breed, 0.25-0.45 SIGNALMENT/DESCRIPTION -
Bones of Upper Limb
BONES OF UPPER & LOWER LIMBS Khaleel Alyahya, PhD, MEd King Saud University College of Medicine @khaleelya OBJECTIVES At the end of the lecture, students should be able to: o List the different bones of the the upper and lower limbs. o List the characteristic features of each bone in both. o Differentiate between bones of right and left sides. o List the articulations between the different bones. o Learn some clinical significances associated with the upper and lower limbs. UPPER LIMBS BONES OF UPPER LIMB It consists of the following: o Pectoral Girdle • Clavicle • Scapula o Arm • Humerus o Forearm • Radius & Ulna o Wrist • Carpal bones o Hand • Metacarpals & Phalanges PECTORAL GIRDLE It composed of Two bones: o Clavicle o Scapula It is very light and it allows the upper limb to have exceptionally free movement. CLAVICLE It is considered as a long bone but it has no medullary (bone marrow) cavity. Its medial (Sternal) end is enlarged & triangular. Its lateral (Acromial) end is flattened. The medial 2/3 of the body (shaft) is convex forward. The lateral 1/3 is concave forward. These curves give the clavicle its appearance of an elongated capital (S) It has two surfaces: • Superior: smooth as it lies just deep to the skin. • Inferior: rough because strong ligaments bind it to the 1st rib. Functions: • It serves as a rigid support to keep upper limb suspended away from the trunk. • Transmits forces from the upper limb to the axial skeleton. • Provides attachment for muscles. • Forms a boundary of the cervicoaxillary canal for protection of the neurovascular bundle of the UL. -
Human Osteology Method Statement N
Human osteology method statement N. Powers (ed) Published online March 2008 Revised February 2012 2 LIST OF CONTRIBUTORS Museum of London Archaeology Centre for Human Bioarchaeology Service (MoLAS) (CHB) Brian Connell HND MSc Jelena Bekvalac BA MSc Amy Gray Jones BSc MSc Lynne Cowal BSc MSc Natasha Powers BSc MSc MIFA RFP Tania Kausmally BSc MSc Rebecca Redfern BA MSc PhD Richard Mikulski BA MSc Don Walker BA MSc AIFA Bill White Dip Arch FRSC FSA 3 CONTENTS Introduction ........................................................................................................................ 8 1 Preservation and archaeological data................................................................... 9 2 Catalogue of completeness ................................................................................... 10 2.1 Cranial elements ..................................................................................................... 10 2.2 Post-cranial elements.............................................................................................. 10 2.3 Cartilage.................................................................................................................. 11 2.4 Dentition ................................................................................................................. 11 3 Age at death estimation........................................................................................ 12 3.1 Subadult age at death............................................................................................. -
Bones of the Lower Limb Doctors Notes Notes/Extra Explanation Editing File Objectives
Color Code Important Bones of the Lower Limb Doctors Notes Notes/Extra explanation Editing File Objectives Classify the bones of the three regions of the lower limb (thigh, leg and foot). Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) Recognize the side of the bone. ﻻ تنصدمون من عدد ال رشائح نصها رشح زائد وملخصات واسئلة Some pictures in the original slides have been replaced with other pictures which are more clear BUT they have the same information and labels. Terminology (Team 434) شيء مرتفع /Eminence a small projection or bump Terminology (Team 434) Bones of thigh (Femur and Patella) Femur o Articulates (joins): (1) above with Acetabulum of hip bone to form the hip joint, (2) below with tibia and patella to form the knee joint. Body of femur (shaft) o Femur consists of: I. Upper end. II. Shaft. III. Lower end. Note: All long bones consist of three things: 1- upper/proximal end posterior 2- shaft anterior 3- lower/distal end I. Upper End of Femur The upper end contains: A. Head B. Neck C. Greater trochanter & D. Lesser trochanter A. Head: o Articulates (joins) with acetabulum of hip bone to form the hip joint. o Has a depression in the center called Fovea Capitis. o The fovea capitis is for the attachment of ligament of the head of Femur. o An artery called Obturator Artery passes along this ligament to supply head of Femur. B. Neck: o Connects head to the shaft. -
Bones of Lower Limb
BONES OF LOWER LIMB ANATOMY DEPARTMENT Dr. Sanaa Alshaarawi OBJECTIVES • At the end of the lecture the students should be able to: • Classify the bones of the three regions of the lower limb (thigh, leg and foot). • Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula). – Bones of the foot (tarsals, metatarsals and phalanges) • Recognize the side of the bone BONES OF THIGH (Femur and Patella) Femur: . Articulates above with acetabulum of hip bone to form the hip joint. Articulates below with tibia and patella to form the knee joint. BONES OF THIGH (Femur and Patella) • Femur : Consists of : • Upper end • Shaft • Lower end Posterior view Anterior View UPPER END OF FEMUR • Head : • It articulates with acetabulum of hip bone to form hip joint. • Has a depression in the center (fovea capitis), for the attachment of ligament NECK of the head of femur. • Obturator artery passes along this ligament to supply head of femur. • Neck : • It connects head to the shaft. UPPER END OF FEMUR • Greater & lesser trochanters : • Anteriorly, connecting the 2 trochanters, the inter-trochanteric line, where the iliofemoral ligament is attached. • Posteriorly, the inter- trochanteric crest, on which is the quadrate tubercle (Qudratus femoris muscle). SHAFT OF FEMUR It has 3 surfaces Anterior Medial Lateral It has 3 borders Two rounded medial and lateral One thick posterior border or ridge called Anterior view Posterior view linea aspera SHAFT OF FEMUR • Anteriorly : is smooth and rounded. • Posteriorly : has a ridge, the linea aspera. • Posteriorly : below the greater trochanter is the gluteal tuberosity for attachment of gluteus M maximus muscle.