Appendix H. CHLOROTHALONIL: Open Literature Studies Identified Using the ECOTOX Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Food Poisoning Toxins of Bacillus Cereus
toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease. -
COVID-19 Evidence Update Date 7Th to 13Th September 2020
UHB Library & Knowledge Services COVID-19 Evidence Update Date 7th to 13th September 2020 Evidence search Healthcare Databases Advanced Search (HDAS) 1. Medical mask versus cotton mask for preventing respiratory droplet transmission in micro environments. Author(s): Ho, Kin-Fai; Lin, Lian-Yu; Weng, Shao-Ping; Chuang, Kai-Jen Source: The Science of the total environment; Sep 2020; vol. 735 ; p. 139510 Publication Date: Sep 2020 Publication Type(s): Journal Article PubMedID: 32480154 DOI 10.1016/j.scitotenv.2020.139510 Database: MEDLINE 2. Update on neurological manifestations of COVID-19. Author(s): Yavarpour-Bali, Hanie; Ghasemi-Kasman, Maryam Source: Life sciences; Sep 2020; vol. 257 ; p. 118063 Publication Date: Sep 2020 Publication Type(s): Journal Article Review PubMedID: 32652139 Available at Life sciences from Unpaywall Database: MEDLINE 3. Forecasting the Future of Urology Practice: A Comprehensive Review of the Recommendations by International and European Associations on Priority Procedures During the COVID-19 Pandemic. Author(s): Amparore, Daniele; Campi, Riccardo; Checcucci, Enrico; Sessa, Francesco; Pecoraro, Angela; Minervini, Andrea; Fiori, Cristian; Ficarra, Vincenzo; Novara, Giacomo; Serni, Sergio; Porpiglia, Francesco Source: European urology focus; Sep 2020; vol. 6 (no. 5); p. 1032-1048 Publication Date: Sep 2020 Publication Type(s): Journal Article Review PubMedID: 32553544 Available at European urology focus from ClinicalKey You will need to register (free of charge) with Clinical Key the first time you use it. Available at European urology focus from Unpaywall Database: MEDLINE 4. Tongue Ulcers Associated with SARS-COV-2 Infection: A case-series. Author(s): Riad, Abanoub; Kassem, Islam; Hockova, Barbora; Badrah, Mai; Klugar, Miloslav Source: Oral diseases; Sep 2020 Publication Date: Sep 2020 Publication Type(s): Letter PubMedID: 32889763 Available at Oral diseases from Wiley Online Library Medicine and Nursing Collection 2020 Database: MEDLINE 5. -
Fungicides, Bactericides, and Nematicides Not All Chemicals Listed Are Recommended Or Currently Registered for Use
FUNGICIDES, BACTERICIDES, AND NEMATICIDES Not all chemicals listed are recommended or currently registered for use. See listings for individual crops for recommended uses. Common or Trade or Fungicide Trade Name Common Name Action* Group #** Use Abound azoxystrobin B, F, Ls, P 11 Effective against a large number of fungi including powdery and downy mildews. Severe phytotoxicity on apples with a McIntosh heritage. Absolute tebuconazole + B, C, F, Ls, P 3 + 11 For rust and powdery mildew control in grasses trifloxystrobin grown for seed in the PNW. Academy fludioxonil + difenoconazole B-N, F, P 12 + 3 Postharvest fungicide. Accrue spiroxamine F, N, P 5 Discontinued. acibenzolar-S-methyl Actigard, Blockade A P1 Labeled for certain vegetable crops and fruit. (Heritage Action) Acquire metalaxyl Fs, N, P, S 4 For seed treatment to control ooymcetes in specified row crops and vegetables. Acrobat dimethomorph F, P 40 Discontinued. Acrobat MZ dimethomorph + F, P 40 + M3 Discontinued. mancozeb Acti-dione cycloheximide F Discontinued. Antibiotic and fungicide. Actigard acibenzolar-S-methyl A P1 Labeled for certain vegetable crops and fruit. Actinovate Streptomyces lydicus F NC Filamentous bacteria as a Biological control agent. Actino-Iron Streptomyces lydicus F, P NC For control of soilborne pathogens of indoor/outdoor ornamentals and vegetable crops. Adament tebuconazole + trifloxystrobin B, C, F, Ls, P 3 + 11 Discontinued. Adorn fluopicolide F, N, P 43 Ornamental label for control of oomycetes. Must be tank-mixed with another fungicide. Affirm Polyoxin D zinc salt F 19 Antibiotic active against certain fungi and bacteria. Aframe azoxystrobin B-N, C, F, Ls, P 11 Another generic fungicide for many diseases. -
Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides. -
Issue 1/January, 2006
Issue 1/January, 2006 by Camilla Krogh Lauritzen, FEBS Information Manager, Editor of FEBS News FEBS Secretariat, co/the Danish Cancer Society Strandboulevarden 49, DK-2100, Denmark E-mail: [email protected] FEBS website: www.FEBS.org Dear Colleagues, A new year has taken its start, and the 2006 FEBS Congress is only approx. six month away. This year, the Con- gress will take place in Istanbul, and again this year, the programme is packed with exiting topics and people — if you have not already done so, have a look at the Congress website, www.FEBS2006.org. Furthermore, please re- member that the FEBS Forum for Young Scientists will take place in connection with the congress (p. 3). 2006 marks "a changing of the guards" in terms of FEBS officers — on page 3 you will get a brief presentation of some known and some new faces in FEBS. Furthermore, you will be presented with the face of Luc Van Dyke (ELSF/ISE), as well as to his article, "Science policy — working together to shape our future". Luc is the debater in this issue of FEBS News, and will elaborate on the current status and importance of science policy science making within Europe (p.9). Finally, this issue will also bring you news from FEBS Letters and FEBS Journal, as well as new opportunities, such as up-coming FEBS courses (p. 8) and job opportunities (p. 10-13). I wish all of you a successful and happy 2006! Kind regards, Camilla About FEBS News: FEBS News is published every second Monday in every second month (starting January). -
Nature Research Centre
N a t u r e Research Centre VILNIUS 2015 UDK 502:001.891(474.5) Na251 Akademijos Str. 2, LT-08412 Vilnius Telephone: +370 5 272 92 57 Fax: +370 5 272 93 52 e-maill: [email protected] http://www.gamtostyrimai.lt/en ISBN 978-9986-443-84-1 © Gamtos tyrimų centras, 2015 The State Scientific Research Institute Nature Research Centre WELCOME, The State Scientific Research Institute Nature Research Centre (NRC) was es- and biomedicine sci- tablished on 31 December 2009 under the Resolution of the Government of the ences and cooperation- Republic of Lithuania (Official Gazette, No. 158-7186, 2009) by merging the In- based solutions to stitute of Botany, the Institute of Ecology of Vilnius University and the Institute scientific tasks are the of Geology and Geography. The research potential and the experimental basis fundamental principles of the three institutes were integrated to create an up-to-date scientific research underlying the activities infrastructure for investigations into present-day and past ecosystems, as well of the NRC. In twenty as studies and development of environmental protection technologies. Uphold- five laboratories of the ing 70-year-old traditions and experience, the newly established NRC not only NRC, scientists carry pursues and co-ordinates long-term scientific research in various fields of biotic out investigations into and abiotic nature and ensures the competence of Lithuania on the interna- environmental state tional stage, but also takes an active role in the development and implementa- quality, natural ecosys- tion of a conceptual framework for the protection of the living environment tems, habitats, species, structure of communi- and its sustainable development, as well as disseminating scientific knowledge ties and populations, regularities and mechanisms of functioning, sensitiv- of biotic and abiotic environment, thus contributing to the development of the ity, vulnerability, genetic diversity, adaptations, microevolution under con- knowledge economy and education of society. -
Guide No. 1 – October 2020 2/12 the CONCEPT and IMPLEMENTATION of CPA GUIDANCE RESIDUE LEVELS
Cooperation Centre for Scientific Research Relative to Tobacco CORESTA GUIDE N° 1 The Concept and Implementation of CPA Guidance Residue Levels October 2020 Agro-Chemical Advisory Committee CORESTA TECHNICAL GUIDE N° 1 Title: The Concept and Implementation of CPA Guidance Residue Levels Status: Valid Note: This document will be periodically reviewed by CORESTA Document history: Date of review Information July 2003 Version 1 GRL for Pyrethrins () and Terbufos corrected. December 2003 CPA terminology corrected. June 2008 Version 2 – GRLs revised and residue definitions added Provisional GRL of 2.00 ppm for Cyfluthrin to replace previous June 2010 GRL of 0.50 ppm July 2013 Version 3 – GRLs revised October 2013 Note for Maleic Hydrazide revised Version 4 – GRLs revised + clarification that scope of GRLs July 2016 applies predominantly to the production of traditional cigarette tobaccos and GAP associated with their cultivation. June 2018 Fluopyram GRL of 5 ppm added to GRL list Version 5 – Nine new CPAs with GRL added to list. November 2019 Revision of GRLs for Chlorantraniliprole and Indoxacarb. Updated web links. October 2020 Version 6 – Flupyradifurone GRL of 21 ppm added to GRL list. CORESTA Guide No. 1 – October 2020 2/12 THE CONCEPT AND IMPLEMENTATION OF CPA GUIDANCE RESIDUE LEVELS Executive Summary • Guidance Residue Levels (GRLs) are in the remit of the Agro-Chemical Advisory Committee (ACAC) of CORESTA. Their development is a joint activity of all ACAC members, who represent the leaf production, processing and manufacturing sectors of the Tobacco Industry. The concept of GRLs and their implementation are described in this guide. • GRLs provide guidance to tobacco growers and assist with interpretation and evaluation of results from analyses of residues of Crop Protection Agents (CPAs*). -
Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests
Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests Dr. Lloyd Dosdall, Department of Agricultural, Food and Nutritional Science, University of Alberta and Doug Moisey, Canola Council of Canada Project Code: CARP 2004-01 Final Report: March 2007 Field studies were undertaken in southern Alberta and Saskatchewan during the 2006 field season to investigate different management strategies for enhancing the effectiveness of natural enemies of cabbage seedpod weevil and diamondback moth in canola. The study showed that the level of parasitism of the cabbage seedpod weevil has increased dramatically in recent years, and the hymenopteran wasp, Diadegma insulare, is capable of causing significant reductions in diamondback moth populations. Canola growers in regions infested with damaging infestations of cabbage seedpod weevil should maintain recommended seeding rates 2.5 to 4.5 lb/acre (3 to 5 kg/ha) for optimal yields and consistent times to crop maturity. However, early seeding (late April) predisposes the crop to greater attack by the cabbage seedpod weevil and should be avoided. Canola insect pests are subject to attack by a wide range of natural enemies, comprising parasitoids, predators, and pathogens, many of which help limit or reduce pest populations. However, in spite of their economic importance, comparatively little is known of their biology and the factors that can enhance their effectiveness. The cabbage seedpod weevil, Ceutorhynchus obstrictus and the diamondback moth, Plutella xylostella are two important insect pests of canola in western Canada that can be subject to considerable population mortality by natural enemies. In this project, field studies were conducted in southern Alberta and Saskatchewan during the 2006 field season to investigate aspects of improved integrated crop management by conserving natural enemies of the cabbage seedpod weevil and the diamondback moth. -
Concentration, Reduction Efficancy and Degradation of Chlorothalonil and Lambda Cyhalothrin Pesticides in Vegetables Sold in a Nairobi City Market
UNIVERSITY OF NAIROBI CONCENTRATION, REDUCTION EFFICANCY AND DEGRADATION OF CHLOROTHALONIL AND LAMBDA CYHALOTHRIN PESTICIDES IN VEGETABLES SOLD IN A NAIROBI CITY MARKET BY JAMES MUNGAI I56/80825/2015 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR AWARD OF THE DEGREE OF MASTER OF SCIENCE IN ANALYTICAL CHEMISTRY OF THE UNIVERSITY OF NAIROBI AUGUST 2020 i DECLARATION I declare that this research work is my original work and has not been submitted to any institution for any academic award. Where other people’s works have been cited, this has properly been acknowledged and referenced in accordance with the University of Nairobi’s requirements. SIGN……………………………… DATE……………….............. JAMES MUNGAI I56/80825/2015 This thesis is submitted for examination with our approval as the university supervisors. Signature ………………………….. Date …………………… DR. JOYCE G. N. KITHURE DEPARTMENT OF CHEMISTRY UNIVERSITY OF NAIROBI Signature ………………………….. Date …………………… DR. VINCENT O. MADADI DEPARTMENT OF CHEMISTRY UNIVERSITY OF NAIROBI Signature ………………………….. Date …………………… DR. DEBORAH A. ABONG’O DEPARTMENT OF CHEMISTRY UNIVERSITY OF NAIROBI ii DEDICATION This research work is dedicated to my inspiration and mentor the late Professor G.N. Kamau for his selfless support, guidance and professional advice during early stages of this study. iii ACKNOWLEDGEMENT In the course of my research work, I have enjoyed inspiration, love, support, guidance and co-operation. I am very grateful to God for the opportunity He has given to me to undertake this study. I give special thanks posthumously to the late Prof. G. N. Kamau for his inspiration, professional advice and valuable guidance. I am very grateful to Dr. Joyce G. N. -
SDS # : FO001139-1-A Revision Date: 2016-05-26 Format: NA Version 1.02
SAFETY DATA SHEET Fame™ +C SC Fungicide SDS # : FO001139-1-A Revision date: 2016-05-26 Format: NA Version 1.02 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Name Fame™ +C SC Fungicide Other means of identification Product Code(s) FO001139-1-A Synonyms FLUOXASTROBIN: (E)-{ 2-[6-(2-chlorophenoxy)-5-fluoropyrimidin-4-yloxy]phenyl} (5,6-dihydro-1,4,2-dioxazin-3-yl)methanone O-methyloxime (IUPAC name); (1E)-[2-[[6-(2-chlorophenoxy)-5-fluoro-4-pyrimidinyl]oxy]phenyl](5,6-dihydro-1,4,2-dioxazin- 3-yl)methanone O-methyloxime (CAS name) CHLOROTHALONIL: tetrachloroisophthalonitrile (IUPAC name); 2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile (CAS name) Active Ingredient(s) Fluoxastrobin, Chlorothalonil Chemical Family Strobiluron fungicide, Broad spectrum, nonsystemic fungicide Recommended use of the chemical and restrictions on use Recommended Use: Fungicide Restrictions on Use: Use as recommended by the label Manufacturer Address FMC Corporation 2929 Walnut Street Philadelphia, PA 19104 (215) 299-6000 (General Information) [email protected] (E-Mail General Information) Emergency telephone number For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) Medical Emergencies: 1 800 / 331-3148 (PROSAR - U.S.A. & Canada) 1 651 / 632-6793 (PROSAR - All Other Countries - Collect) 2. HAZARDS IDENTIFICATION Classification OSHA Regulatory Status This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute -
Aedes Aegypti Mos20 Cells Internalizes Cry Toxins by Endocytosis, and Actin Has a Role in the Defense Against Cry11aa Toxin
Toxins 2014, 6, 464-487; doi:10.3390/toxins6020464 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Aedes aegypti Mos20 Cells Internalizes Cry Toxins by Endocytosis, and Actin Has a Role in the Defense against Cry11Aa Toxin Adriana Vega-Cabrera 1, Angeles Cancino-Rodezno 2, Helena Porta 1 and Liliana Pardo-Lopez 1,* 1 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca 62250, Morelos, Mexico; E-Mails: [email protected] (A.V.-C.); [email protected] (H.P.) 2 Facultad de Ciencias, Universidad Nacional Autónoma de México; Av. Universidad 3000, Coyoacán, Distrito Federal 04510, Mexico; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-777-3291-624; Fax: +52-777-3291-624. Received: 14 October 2013; in revised form: 11 January 2014 / Accepted: 16 January 2014 / Published: 28 January 2014 Abstract: Bacillus thuringiensis (Bt) Cry toxins are used to control Aedes aegypti, an important vector of dengue fever and yellow fever. Bt Cry toxin forms pores in the gut cells, provoking larvae death by osmotic shock. Little is known, however, about the endocytic and/or degradative cell processes that may counteract the toxin action at low doses. The purpose of this work is to describe the mechanisms of internalization and detoxification of Cry toxins, at low doses, into Mos20 cells from A. aegypti, following endocytotic and cytoskeletal markers or specific chemical inhibitors. Here, we show that both clathrin-dependent and clathrin-independent endocytosis are involved in the internalization into Mos20 cells of Cry11Aa, a toxin specific for Dipteran, and Cry1Ab, a toxin specific for Lepidoptera. -
Syllabus 2017
BI 432/532 Introductory Mycology Fall 2017 Credits: 5 Prerequisites: BI 214, 253 or instructor’s consent Required textbook: Introduction to Fungi, 3rd Ed. J. Webster and R. S. Weber. Cambridge Univ. Press. 2007. Lab manual: Mushrooms Demystified, 2nd Ed. D. Arora. Ten Speed Press. 1986. Mushrooms of the Pacific Northwest, Trudell and Ammirati, Timber Press, 2009. Additional learning resources will be provided. Reference materials on reserve: Webster and Weber, Introduction to Fungi Arora, Mushrooms Demystified Instructor: Jeff Stone, Office hours MF 11:30–12:30, 1600–1700 in KLA 5 & by arrangement [email protected] GE: Hannah Soukup, Office hours TBA, [email protected] Undergraduate Teaching Assistant Kylea Garces, [email protected] Lectures: MWF 10:00 – 10:50 Labs MF 13:00 – 15:50 Final Exam Dec 8, 10:15 Course description An overview of the kingdom Fungi together with fungus-like organisms traditionally studied by mycologists. Students will learn the unique biological (life history, physiological, structural, ecological, reproductive) characteristics that distinguish Fungi (and fungus-like taxa) from other organisms. Ecological roles and interactions of fungi will be emphasized within the organizational framework of the most recent findings of molecular phylogenetics. Students will learn the defining biological characteristics of the phyla of kingdom Fungi, and of several of the most important taxa (classes, orders, genera) within these. The unique aspects of each taxonomic group as agents of plant, animal, and human disease, as partners in symbioses with various organisms, and as mediators of ecological processes will be discussed in detail. In the laboratory portion of the class, students will learn to identify distinctive diagnostic structures of fungi, learn to differentiate various fungal taxa, and how to identify genera and species of macro- and microfungi.