Lecture 20 Lc & Rlc Circuits & Ac Circuits I

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 20 Lc & Rlc Circuits & Ac Circuits I LECTURE 20 LC & RLC CIRCUITS & AC CIRCUITS I Lecture 20 2 ¨ Reading chapter 29-1 and 29-3 to 29-4 ¤ LC circuits ¤ RLC circuits (without AC generator) ¤ Transformers ¤ AC circuit with resistor ¤ RMS LC circuits 3 ¨ Consider an LC circuit with initial charge Q0 stored in the upper capacitor plate and with the switch open. At t = 0, the switch is closed. )* , )-, , ¨ � + � = 0 ⇒ � + = 0 ⇒ � + = 0 " $ )+ $ )+- $ 1 Q t Q cos t, where ( ) = 0 ω ω = LC dQ I t Q sin t ( ) = = −ω 0 ω dt ¨ Q lags I by 90°. ¨ Total energy remains constant. Energy in LC circuits 4 ¨ The sum of the electric and magnetic energies stored in a LC circuit at any given time is the same as the initial electric energy stored in the capacitor. ¨ Energy does not dissipate through capacitors or inductors. 1 Q2 1 1 Q2 U + U = + LI 2 = 0 e m 2 C 2 2 C +Q0 -Q0 -Q0 +Q0 Example: 1 5 ¨ You have a 10 mH inductor. What capacitor should you use with it in series to make an oscillator with a frequency of 920 kHz? (This frequency is near the center of the AM radio band.) Demo: 1 6 ¨ Tesla coil ¤ Produces 0.5 million volts at 350 kHz ¤ Demonstration of resonance Spark gap L L’ Lp L Cs 110Vac Cp s ZAP! 110V to 15kV ac ac 1 1 transformer ω0 = = L C L C p p s s RLC circuits 7 ¨ Consider an RLC circuit with an initially charged capacitor and with the switch open. After the switch is closed, if R is small, Q and I oscillate with the natural frequency, ω0, but the oscillation is damped. 1 ω0 = LC ¨ The initial energy stored in the capacitor dissipates through the resistor. The higher the resistance of the resistor, the more damping the circuit has. Demo: 2 8 ¨ LC oscillation ¨ Damped RLC oscillation Alternating current 9 ¨ When you plug a lamp into a wall socket, the voltage and current supplied to the light bulb vary sinusoidally. ¨ The voltage oscillates with a fixed frequency of 60 cycles per second in the US. ¨ The current therefore also periodically reverses direction, so the wall socket provides an alternating current (ac). Quiz: 1 10 AC generator 11 ¨ An alternating current (ac) generator produces an emf given by E = Epeak cosωt where Epeak is the largest value attained by the voltage during a cycle, ω is the angular frequency, and t is time. ¨ In circuit diagrams, an ac generator is represented by the symbol: Resistors in AC circuits 12 ¨ The potential drop across the resistor, VR, and current through the circuit, I, are given by VR = VR peak cosωt V VR R peak I = = cosωt ≡ Ipeak cosωt R R ¨ VR and I are in phase. rms current and voltage 13 ¨ The voltage and current in an ac circuit both average to zero, making the average useless in describing their behavior. ¨ We use instead the root mean square (rms). 5 2 ¨ In general, the rms value of x is given by �/01 = � 34 ¨ The rms values of sinusoidally varying current and voltage are given by: I max Vmax Irms = V = 2 rms 2 ¤ 120 volts is the rms value of household ac. ¨ The rms or max current is related to the rms or max voltage by Vrms Vmax Irms = Imax = R R Power delivered to the resistor 14 ¨ The power, P, and average power, Pav, delivered to the resistor are given by 2 2 2 P = I R = Ipeak Rcos ωt 1 P = I 2 R = I 2 R av ( )av peak 2 P = I 2 R = E I av rms rms rms Quiz: 2 15 Example: 2 16 ¨ A resistor with a resistance of R = 3.33 kΩ is connected to a generator with a peak voltage of Vpeak = 141 V. a) Find the average power delivered to this circuit. b) Find the maximum power delivered to this circuit. Transformers 17 ¨ A transformer is a device used to increase or decrease the voltage in a circuit without a loss of power. ¨ The voltages across the primary and secondary coils are related by the numbers of turns of the coils. ¨ Since the power in both circuits must be the same, if the voltage is lower, the current must be higher. � � � 6 = 6 = 2 /01 �2 �2 �6 /01 V2 Quiz: 3 through 5 18 Demo: 3 19 ¨ Transformers ¤ Turn ratios of 1:1, 1:2, and 2:1. Example: 3 20 ¨ The primary coil of a step-down transformer has N1 = 250 turns and is connected to an outlet of V1 = 120 V. The secondary coil is to supply I2 rms = 20 A at V2 = 9.0 V. a) Find the rms current in the primary coil. b) Find the number of turns in the secondary coil. Demo: 4 21 ¨ Transformers and power lines ¤ To minimize the P = I2R heat loss in electric transmission lines, we use a high voltage and a low current. ¤ For safety, power is delivered to consumers at lower voltages and therefore with higher currents. ¤ Because of this ease of stepping the voltage up or down with transformers, AC rather than DC is in common use. Electrical fuse and circuit breaker 22 ¨ Electrical fires can be started by improper or damaged wiring because of the heat caused by a too-large current or resistance. ¨ A fuse is designed to be the hottest point in the circuit – if the current is too high, the fuse melts. ¨ A circuit breaker is similar, except that it is a bimetallic strip that bends enough to break the connection when it becomes too hot. When it cools, it can be reset. Polarized and grounded plugs 23 ¨ ~0.1 A of current through a body could be fatal. ¨ With a polarized plug, the case of an appliance is always connected to the low-potential side, essentially at ground. The high-potential extends only from the wall outlet to the switch when the appliance is turned off. Polarized plug ¨ With a three-prong grounded plug, the round prong is connected to the ground and the case of an appliance. If a high-potential wire accidentally touches the case, the current flows through the third prong. Grounded plug GFCI outlets 24 ¨ The ground fault circuit interrupter (GFCI) protects against electric shock. ¤ Wire 1: from the outlet to the appliance ¤ Wire 2: from the appliance to the outlet ¨ If there is no current leakage, the net current though the iron ring is zero. ¨ If there is a leakage, the current in wire 2 is less, and sensing coil detects the change in magnetic flux. .
Recommended publications
  • LABORATORY 3: Transient Circuits, RC, RL Step Responses, 2Nd Order Circuits
    Alpha Laboratories ECSE-2010 LABORATORY 3: Transient circuits, RC, RL step responses, 2nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators 1st order RC, RL Circuits 2nd order RLC series, parallel circuits Thevenin circuits Part A: Transient Circuits RC Time constants: A time constant is the time it takes a circuit characteristic (Voltage for example) to change from one state to another state. In a simple RC circuit where the resistor and capacitor are in series, the RC time constant is defined as the time it takes the voltage across a capacitor to reach 63.2% of its final value when charging (or 36.8% of its initial value when discharging). It is assume a step function (Heavyside function) is applied as the source. The time constant is defined by the equation τ = RC where τ is the time constant in seconds R is the resistance in Ohms C is the capacitance in Farads The following figure illustrates the time constant for a square pulse when the capacitor is charging and discharging during the appropriate parts of the input signal. You will see a similar plot in the lab. Note the charge (63.2%) and discharge voltages (36.8%) after one time constant, respectively. Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 1 Alpha Laboratories ECSE-2010 Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 2 Alpha Laboratories ECSE-2010 Discovery Board: For most of the remaining class, you will want to compare input and output voltage time varying signals.
    [Show full text]
  • C I L Q LC Circuit
    Your Comments I am not feeling great about this midterm...some of this stuff is really confusing still and I don't know if I can shove everything into my brain in time, especially after spring break. Can you go over which topics will be on the exam Wednesday? This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively? I may have missed something simple, but in question 1 during the prelecture why does the charge on the capacitor have to be 0 at t=0? I feel like that bit of knowledge will help me with the test wednesday I remember you mentioning several weeks ago that there was one equation you were going to add to the 2013 equation sheet... which formula was that? Thanks! Electricity & Magnetism Lecture 19, Slide 1 Some Exam Stuff Exam Wed. night (March 27th) at 7:00 Covers material in Lectures 9 – 18 Bring your ID: Rooms determined by discussion section (see link) Conflict exam at 5:15 Don’t forget: • Worked examples in homeworks (the optional questions) • Other old exams For most people, taking old exams is most beneficial Final Exam dates are now posted The Big Ideas L9-18 Kirchoff’s Rules Sum of voltages around a loop is zero Sum of currents into a node is zero Kirchoff’s rules with capacitors and inductors • In RC and RL circuits: charge and current involve exponential functions with time constant: “charging and discharging” Q dQ Q • E.g. IR R V C dt C Capacitors and inductors store energy Magnetic fields Generated by electric currents (no magnetic charges) Magnetic
    [Show full text]
  • Analysis of Magnetic Resonance in Metamaterial Structure
    Analysis of magnetic resonance in Metamaterial structure Rajni#1, Anupma Marwaha#2 #1 Asstt. Prof. Shaheed Bhagat Singh College of Engg. And Technology,Ferozepur(Pb.)(India), #2 Assoc. Prof., Sant Longowal Institute of Engg. And Technology,Sangrur(Pb.)(India) [email protected] 2 [email protected] Abstract: ‘Metamaterials’ is one of the most 1. Introduction recent topics in several areas of science and technology due to its vast potential in various Metamaterials are artificial materials synthesized applications. These are artificially fabricated by embedding specific inclusions like periodic materials which exhibit negative permittivity structures in host media. These materials have and/or negative permeability. The unusual the unique property of negative permittivity electromagnetic properties of metamaterial and/or negative permeability not encountered in have opened more opportunities for better the nature. If materials have both parameters antenna design to surmount the limitations of negative at the same time, then they exhibit an conventional antennas. Metamaterials have effective negative index of refraction and are created many designs in a broad frequency referred to as Left-Handed Metamaterials spectrum from microwave to millimeter wave (LHM). This name is given to these materials to optical structures. The edifice building because the electric field, magnetic field and the blocks of metamaterials are synthetically wave vector form a left-handed system. These fabricated periodic structures of having materials offer a new dimension to the antenna lattice constants smaller than the wavelength applications. The phase velocity and group of the incident radiation. Thus metamaterial velocity in these materials are anti-parallel to properties can be controlled by the design of each other i.e.
    [Show full text]
  • Experiment 12: AC Circuits - RLC Circuit
    Experiment 12: AC Circuits - RLC Circuit Introduction An inductor (L) is an important component of circuits, on the same level as resistors (R) and capacitors (C). The inductor is based on the principle of inductance - that moving charges create a magnetic field (the reverse is also true - a moving magnetic field creates an electric field). Inductors can be used to produce a desired magnetic field and store energy in its magnetic field, similar to capacitors being used to produce electric fields and storing energy in their electric field. At its simplest level, an inductor consists of a coil of wire in a circuit. The circuit symbol for an inductor is shown in Figure 1a. So far we observed that in an RC circuit the charge, current, and potential difference grew and decayed exponentially described by a time constant τ. If an inductor and a capacitor are connected in series in a circuit, the charge, current and potential difference do not grow/decay exponentially, but instead oscillate sinusoidally. In an ideal setting (no internal resistance) these oscillations will continue indefinitely with a period (T) and an angular frequency ! given by 1 ! = p (1) LC This is referred to as the circuit's natural angular frequency. A circuit containing a resistor, a capacitor, and an inductor is called an RLC circuit (or LCR), as shown in Figure 1b. With a resistor present, the total electromagnetic energy is no longer constant since energy is lost via Joule heating in the resistor. The oscillations of charge, current and potential are now continuously decreasing with amplitude.
    [Show full text]
  • ELECTRICAL CIRCUIT ANALYSIS Lecture Notes
    ELECTRICAL CIRCUIT ANALYSIS Lecture Notes (2020-21) Prepared By S.RAKESH Assistant Professor, Department of EEE Department of Electrical & Electronics Engineering Malla Reddy College of Engineering & Technology Maisammaguda, Dhullapally, Secunderabad-500100 B.Tech (EEE) R-18 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY II Year B.Tech EEE-I Sem L T/P/D C 3 -/-/- 3 (R18A0206) ELECTRICAL CIRCUIT ANALYSIS COURSE OBJECTIVES: This course introduces the analysis of transients in electrical systems, to understand three phase circuits, to evaluate network parameters of given electrical network, to draw the locus diagrams and to know about the networkfunctions To prepare the students to have a basic knowledge in the analysis of ElectricNetworks UNIT-I D.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C circuits (Series and parallel combinations) for D.C. excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - II A.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C Series circuits for sinusoidal excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - III THREE PHASE CIRCUITS: Phase sequence, Star and delta connection, Relation between line and phase voltages and currents in balanced systems, Analysis of balanced and Unbalanced three phase circuits UNIT – IV LOCUS DIAGRAMS & RESONANCE: Series and Parallel combination of R-L, R-C and R-L-C circuits with variation of various parameters.Resonance for series and parallel circuits, concept of band width and Q factor. UNIT - V NETWORK PARAMETERS:Two port network parameters – Z,Y, ABCD and hybrid parameters.Condition for reciprocity and symmetry.Conversion of one parameter to other, Interconnection of Two port networks in series, parallel and cascaded configuration and image parameters.
    [Show full text]
  • Lecture 4: RLC Circuits and Resonant Circuits
    Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: ● What's VR? ◆ Simplest way to solve for V is to use voltage divider equation in complex notation: V R X L X C V = in R R + XC + XL L C R Vin R = Vin = V0 cosω t 1 R + + jωL jωC ◆ Using complex notation for the apply voltage V = V cosωt = Real(V e jωt ): j t in 0 0 V e ω R V = 0 R $ 1 ' € R + j& ωL − ) % ωC ( ■ We are interested in the both the magnitude of VR and its phase with respect to Vin. ■ First the magnitude: jωt V0e R € V = R $ 1 ' R + j& ωL − ) % ωC ( V R = 0 2 2 $ 1 ' R +& ωL − ) % ωC ( K.K. Gan L4: RLC and Resonance Circuits 1 € ■ The phase of VR with respect to Vin can be found by writing VR in purely polar notation. ❑ For the denominator we have: 0 * 1 -4 2 ωL − $ 1 ' 2 $ 1 ' 2 1, /2 R + j& ωL − ) = R +& ωL − ) exp1 j tan− ωC 5 % C ( % C( , R / ω ω 2 , /2 3 + .6 ❑ Define the phase angle φ : Imaginary X tanφ = Real X € 1 ωL − = ωC R ❑ We can now write for VR in complex form: V R e jωt V = o R 2 € jφ 2 % 1 ( e R +' ωL − * Depending on L, C, and ω, the phase angle can be & ωC) positive or negative! In this example, if ωL > 1/ωC, j(ωt−φ) then VR(t) lags Vin(t). = VR e ■ Finally, we can write down the solution for V by taking the real part of the above equation: j(ωt−φ) V R e V R cos(ωt −φ) V = Real 0 = 0 R 2 2 € 2 % 1 ( 2 % 1 ( R +' ωL − * R +' ωL − * & ωC ) & ωC ) K.K.
    [Show full text]
  • 6.453 Quantum Optical Communication Reading 4
    Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Lecture Number 4 Fall 2016 Jeffrey H. Shapiro c 2006, 2008, 2014, 2016 Date: Tuesday, September 20, 2016 Reading: For the quantum harmonic oscillator and its energy eigenkets: C.C. Gerry and P.L. Knight, Introductory Quantum Optics (Cambridge Uni- • versity Press, Cambridge, 2005) pp. 10{15. W.H. Louisell, Quantum Statistical Properties of Radiation (McGraw-Hill, New • York, 1973) sections 2.1{2.5. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, • 1973) pp. 128{133. Introduction In Lecture 3 we completed the foundations of Dirac-notation quantum mechanics. Today we'll begin our study of the quantum harmonic oscillator, which is the quantum system that will pervade the rest of our semester's work. We'll start with a classical physics treatment and|because 6.453 is an Electrical Engineering and Computer Science subject|we'll develop our results from an LC circuit example. Classical LC Circuit Consider the undriven LC circuit shown in Fig. 1. As in Lecture 2, we shall take the state variables for this system to be the charge on its capacitor, q(t) Cv(t), and the flux through its inductor, p(t) Li(t). Furthermore, we'll consider≡ the behavior of this system for t 0 when one≡ or both of the initial state variables are non-zero, i.e., q(0) = 0 and/or≥p(0) = 0. You should already know that this circuit will then undergo simple6 harmonic motion,6 i.e., the energy stored in the circuit will slosh back and forth between being electrical (stored in the capacitor) and magnetic (stored in the inductor) as the voltage and current oscillate sinusoidally at the resonant frequency ! = 1=pLC.
    [Show full text]
  • How to Design Analog Filter Circuits.Pdf
    a b FIG. 1-TWO LOWPASS FILTERS. Even though the filters use different components, they perform in a similiar fashion. MANNlE HOROWITZ Because almost every analog circuit contains some filters, understandinghow to work with them is important. Here we'll discuss the basics of both active and passive types. THE MAIN PURPOSE OF AN ANALOG FILTER In addition to bandpass and band- age (because inductors can be expensive circuit is to either pass or reject signals rejection filters, circuits can be designed and hard to find); they are generally easier based on their frequency. There are many to only pass frequencies that are either to tune; they can provide gain (and thus types of frequency-selective filter cir- above or below a certain cutoff frequency. they do not necessarily have any insertion cuits; their action can usually be de- If the circuit passes only frequencies that loss); they have a high input impedance, termined from their names. For example, are below the cutoff, the circuit is called a and have a low output impedance. a band-rejection filter will pass all fre- lo~~passfilter, while a circuit that passes A filter can be in a circuit with active quencies except those in a specific band. those frequencies above the cutoff is a devices and still not be an active filter. Consider what happens if a parallel re- higlzpass filter. For example, if a resonant circuit is con- sonant circuit is connected in series with a All of the different filters fall into one . nected in series with two active devices signal source.
    [Show full text]
  • Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec
    Physics 121 - Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec. 3 - 8 • The Series RLC Circuit. Amplitude and Phase Relations • Phasor Diagrams for Voltage and Current • Impedance and Phasors for Impedance • Resonance • Power in AC Circuits, Power Factor • Examples • Transformers • Summaries Copyright R. Janow – Fall 2013 Current & voltage phases in pure R, C, and L circuits Current is the same everywhere in a single branch (including phase) Phases of voltages in elements are referenced to the current phasor • Apply sinusoidal voltage E (t) = EmCos(wDt) • For pure R, L, or C loads, phase angles are 0, +p/2, -p/2 • Reactance” means ratio of peak voltage to peak current (generalized resistances). VR& iR in phase VC lags iC by p/2 VL leads iL by p/2 Resistance Capacitive Reactance Inductive Reactance 1 V /i R Vmax /iC C Vmax /iL L wDL max R wDC Copyright R. Janow – Fall 2013 The impedance is the ratio of peak EMF to peak current peak applied voltage Em Z [Z] ohms peak current that flows im 2 2 2 Magnitude of Em: Em VR (VL VC) 1 Reactances: L wDL C wDC L VL /iL C VC /iC R VR /iR im iR,max iL,max iC,max For series LRC circuit, divide Em by peak current 2 2 1/2 Applies to a single Magnitude of Z: Z [ R (L C) ] branch with L, C, R VL VC L C Phase angle F: tan(F) see diagram VR R F measures the power absorbed by the circuit: P Em im Em im cos(F) • R ~ 0 tiny losses, no power absorbed im normal to Em F ~ +/- p/2 • XL=XC im parallel to Em F 0 Z=R maximum currentCopyright (resonance) R.
    [Show full text]
  • Quasi-Static and Propagating Modes in Three-Dimensional Thz Circuits
    Quasi-static and propagating modes in three-dimensional THz circuits Mathieu Jeannin,1 Djamal Gacemi,1 Angela Vasanelli,1 Lianhe Li,2 Alexander Giles Davies,2 Edmund Linfield,2 Giorgio Biasiol,3 Carlo Sirtori1 and Yanko Todorov1,* 1Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, université de Paris, F-75005 Paris, France 2School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT Leeds, United Kingdom 3Laboratori TASC, CNR-IOM at Area Science Park, Strada Statale 14, km163.5, Basovizza, TS34149, Italy *[email protected] Abstract: We provide an analysis of the electromagnetic modes of three-dimensional metamaterial resonators in the THz frequency range. The fundamental resonance of the structures is fully described by an analytical circuit model, which not only reproduces the resonant frequencies but also the coupling of the metamaterial with an incident THz radiation. We also evidence the contribution of the propagation effects, and show how they can be reduced by design. In the optimized design the electric field energy is lumped into ultra-subwavelength (λ/100) capacitors, where we insert semiconductor absorber based onλ/100) capacitors,whereweinsertsemiconductorabsorberbasedon the collective electronic excitation in a two dimensional electron gas. The optimized electric field confinement is evidenced by the observation of the ultra-strong light-matter coupling regime, and opens many possible applications for these structures for detectors, modulators and sources of THz radiation. 1. Introduction The majority of metamaterials has a two-dimensional geometry and benefit from well-established planar top-down fabrication techniques. When used as passive optical components, this two-dimensional character results in flat optical elements, such as lenses or phase control/phase shaping devices [1]–[4].
    [Show full text]
  • Notes on LRC Circuits and Maxwell's Equations Last Quarter, in Phy133
    Notes on LRC circuits and Maxwell's Equations Last quarter, in Phy133, we covered electricity and magnetism. There was not enough time to finish these topics, and this quarter we start where we left off and complete the classical treatment of the electro-magnetic interaction. We begin with a discussion of circuits which contain a capacitor, resistor, and a significant amount of self-induction. Then we will revisit the equations for the electric and magnetic fields and add the final piece, due to Maxwell. As we will see, the missing term added by Maxwell will unify electromagnetism and light. Besides unifying different phenomena and our understanding of physics, Maxwell's term lead the way to the development of wireless communication, and revolutionized our world. LRC Circuits Last quarter we covered circuits that contained batteries and resistors. We also considered circuits with a capacitor plus resistor as well as resistive circuits that has a large amount of self-inductance. The self-inductance was dominated by a coiled element, i.e. an inductor. Now we will treat circuits that have all three properties, capacitance, resistance and self-inductance. We will use the same "physics" we discussed last quarter pertaining to circuits. There are only two basic principles needed to analyze circuits. 1. The sum of the currents going into a junction (of wires) equals the sum of the currents leaving that junction. Another way is to say that the charge flowing into equals the charge flowing out of any junction. This is essentially a state- ment that charge is conserved. 1) The sum of the currents into a junction equals the sum of the currents flowing out of the junction.
    [Show full text]
  • AC Power • Resonant Circuits • Phasors (2-Dim Vectors, Amplitude and Phase) What Is Reactance ? You Can Think of It As a Frequency-Dependent Resistance
    Physics-272 Lecture 20 • AC Power • Resonant Circuits • Phasors (2-dim vectors, amplitude and phase) What is reactance ? You can think of it as a frequency-dependent resistance. 1 For high ω, χ ~0 X = C C ωC - Capacitor looks like a wire (“short”) For low ω, χC∞ - Capacitor looks like a break For low ω, χL~0 - Inductor looks like a wire (“short”) XL = ω L For high ω, χL∞ - Inductor looks like a break (inductors resist change in current) ("XR "= R ) An RL circuit is driven by an AC generator as shown in the figure. For what driving frequency ω of the generator, will the current through the resistor be largest a) ω large b) ω small c) independent of driving freq. The current amplitude is inversely proportional to the frequency of the ω generator. (X L= L) Alternating Currents: LRC circuit Figure (b) has XL>X C and (c) has XL<X C . Using Phasors, we can construct the phasor diagram for an LRC Circuit. This is similar to 2-D vector addition. We add the phasors of the resistor, the inductor, and the capacitor. The inductor phasor is +90 and the capacitor phasor is -90 relative to the resistor phasor. Adding the three phasors vectorially, yields the voltage sum of the resistor, inductor, and capacitor, which must be the same as the voltage of the AC source. Kirchoff’s voltage law holds for AC circuits. Also V R and I are in phase. Phasors R ε ω Problem : Given Vdrive = m sin( t), C L find VR, VL, VC, IR, IL, IC ε ∼ Strategy : We will use Kirchhoff’s voltage law that the (phasor) sum of the voltages VR, VC, and VL must equal Vdrive .
    [Show full text]