Chapter 21: RLC Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 21: RLC Circuits Chapter 21: RLC Circuits PHY2054: Chapter 21 1 Voltage and Current in RLC Circuits ÎAC emf source: “driving frequency” f ε = εωm sin t ω = 2π f ÎIf circuit contains only R + emf source, current is simple ε ε iI==sin()ω tI =m () current amplitude R mmR ÎIf L and/or C present, current is not in phase with emf ε iI=−=sin()ωφ t I m mmZ ÎZ, φ shown later PHY2054: Chapter 21 2 AC Source and Resistor Only ÎDriving voltage is ε = εωm sin t i ÎRelation of current and voltage iR= ε / ε ~ R ε iI==sinω tI m mmR Current is in phase with voltage (φ = 0) PHY2054: Chapter 21 3 AC Source and Capacitor Only q ÎVoltage is vt==ε sinω CmC ÎDifferentiate to find current i qC= εm sinω t idqdtCV==/cosω C ω t ε ~ C ÎRewrite using phase (check this!) iCVt=+°ω C sin()ω 90 ÎRelation of current and voltage εm iI=+°=mmsin()ω t 90 I ( XC =1/ωC) XC ΓCapacitive reactance”: XCC =1/ω Current “leads” voltage by 90° PHY2054: Chapter 21 4 AC Source and Inductor Only ÎVoltage is vLm== Ldi/sin dtε ω t ÎIntegrate di/dt to find current: i di//sin dt= ()εm Lω t iLt=−()εm /cosωω ε ~ L ÎRewrite using phase (check this!) iLt=−°()εm /sin90ωω( ) ÎRelation of current and voltage εm iI=−°=mmsin()ω t 90 I ( XLL = ω ) X L ΓInductive reactance”: XLL = ω Current “lags” voltage by 90° PHY2054: Chapter 21 5 General Solution for RLC Circuit ÎWe assume steady state solution of form iI= m sin(ω t−φ ) Im is current amplitude φ is phase by which current “lags” the driving EMF Must determine Im and φ ÎPlug in solution: differentiate & integrate sin(ωt-φ) iI=−m sin()ω tφ di Substitute di q =−ωItm cos()ωφ LRi++=ε sinω t dt dt C m I qt=−m cos()ω −φ ω I I ωLtcos()ωφ−+ IRt sin () ωφ −−m cos() ωφ t −= ε sin ω t mmωC m PHY2054: Chapter 21 6 General Solution for RLC Circuit (2) I I ωLtcos()ωφ−+ IRt sin () ωφ −−m cos() ωφ t −= ε sin ω t mmωC m ÎExpand sin & cos expressions sin()ωtt−=φωφω sin cos − cos t sinφ High school trig! cos()ωtt−=φωφω cos cos + sin t sinφ ÎCollect sinωt&cosωtterms separately ()ωLC−−=1/ωφ cos R sin φ 0 cosωtterms ILmmm()ω −+=1/ωφ C sin IR cos φε sinωtterms ÎThese equations can be solved for Im and φ (next slide) PHY2054: Chapter 21 7 General Solution for RLC Circuit (3) ÎSolve for φ and Im ωLC−1/ω XX− ε tanφ =≡LCI = m R R m Z ÎR, XL, XC and Z have dimensions of resistance XLL = ω Inductive “reactance” XCC =1/ω Capacitive “reactance” 2 2 Total “impedance” ZRXX=+−()LC ÎThis is where φ, XL, XC and Z come from! PHY2054: Chapter 21 8 AC Source and RLC Circuits ε I = m Maximum current m Z XX− tanφ = LC Phase angle R Inductive reactance XLL ==ω ()ωπ2 f Capacitive reactance XCC =1/ω 2 2 Total impedance ZRXX=+−()LC φ= angle that current “lags” applied voltage PHY2054: Chapter 21 9 What is Reactance? Think of it as a frequency-dependent resistance 1 X = Shrinks with increasing ω C ωC Grows with increasing ω X L = ωL ("X R "= R ) Independent of ω PHY2054: Chapter 21 10 Pictorial Understanding of Reactance 2 2 ZRXX=+−()LC XX− tanφ = LC R R cosφ = Z PHY2054: Chapter 21 11 Summary of Circuit Elements, Impedance, Phase Angles XXLC− 2 2 tanφ = ZRXX=+−()LC R PHY2054: Chapter 21 12 Quiz ÎThree identical EMF sources are hooked to a single circuit element, a resistor, a capacitor, or an inductor. The current amplitude is then measured as a function of frequency. Which one of the following curves corresponds to an inductive circuit? (1) a (2) b a (3) c b (4) Can’t tell without more info Imax c f XL==ω ()ωπ2 f L For inductor, higher frequency gives higher IXmax= ε max / L reactance, therefore lower current PHY2054: Chapter 21 13 RLC Example 1 ÎBelow are shown the driving emf and current vs time of an RLC circuit. We can conclude the following Current “leads” the driving emf (φ<0) Circuit is capacitive (XC > XL) I ε t PHY2054: Chapter 21 14 RLC Example 2 ÎR = 200Ω, C = 15μF, L = 230mH, εmax = 36v, f = 60 Hz X L =××2π 60 0.23 = 86.7 Ω XC > XL Capacitive circuit −6 XC =×××=Ω1/() 2π 60 15 10 177 2 2 Z =+−=Ω200() 86.7 177 219 IZmax===ε max / 36/ 219 0.164A −1 ⎛⎞86.7− 177 Current leads emf φ ==−°tan⎜⎟ 24.3 (as expected) ⎝⎠200 it=+°0.164sin(ω 24.3 ) PHY2054: Chapter 21 15 Resonance ÎConsider impedance vs frequency 2222 Z =+−RXX()LC =+− R()ωω L1/ C ÎZ is minimum when ωLC=1/ω ωω==0 1/ LC This is resonance! ÎAt resonance Impedance = Z is minimum Current amplitude = Im is maximum PHY2054: Chapter 21 16 Imax vs Frequency and Resonance ÎCircuit parameters: C = 2.5μF, L = 4mH, εmax = 10v 1/2 f0 = 1 / 2π(LC) = 1590 Hz Plot Imax vs f 2 2 Imax =+−10/RLC()ωω 1/ R = 5Ω R = 10Ω R = 20Ω Imax Resonance ff= 0 f / f0 PHY2054: Chapter 21 17 Power in AC Circuits ÎInstantaneous power emitted by circuit: P = i2R 22 PIR=−mdsin ()ω tφ Instantaneous power oscillates ÎMore useful to calculate power averaged over a cycle Use <…> to indicate average over a cycle 221 2 P =−=IRmdsin (ωφ t) 2 IR m ÎDefine RMS quantities to avoid ½ factors in AC circuits Im εm 2 Irms = εrms = Pave= IR rms 2 2 ÎHouse current Vrms = 110V ⇒ Vpeak = 156V PHY2054: Chapter 21 18 Power in AC Circuits Î 2 Power formula Pave= IR rms IIrms= max /2 εrms εrms ÎRewrite using I = PIRIave== rmsε rms rms cosφ rms Z Z Z R XX− Pave= εφ rmsI rms cos cosφ = L C Z φ R Îcosφ is the “power factor” To maximize power delivered to circuit ⇒ make φ close to zero Max power delivered to load happens at resonance E.g., too much inductive reactance (XL) can be cancelled by increasing XC (e.g., circuits with large motors) PHY2054: Chapter 21 19 Power Example 1 ÎR = 200Ω, XC = 150Ω, XL = 80Ω, εrms = 120v, f = 60 Hz 2 2 Z =+−=Ω200() 80 150 211.9 IZrms==ε rms / 120/ 211.9 = 0.566A −1 ⎛⎞80− 150 Current leads emf φ ==−°tan⎜⎟ 19.3 Capacitive circuit ⎝⎠200 cosφ = 0.944 Pave==××=ε rmsI rms cosφ 120 0.566 0.944 64.1W Same 22 PIRave== rms 0.566 ×= 200 64.1W PHY2054: Chapter 21 20 Power Example 1 (cont) ÎR = 200Ω, XC = 150Ω, XL = 80Ω, εrms = 120v, f = 60 Hz ÎHow much capacitance must be added to maximize the power in the circuit (and thus bring it into resonance)? Want XC = XL to minimize Z, so must decrease XC XfCCC =Ω=150 1/ 2π = 17.7μF XXCLnew==Ω80 C new = 33.2μF So we must add 15.5μF capacitance to maximize power PHY2054: Chapter 21 21 Power vs Frequency and Resonance ÎCircuit parameters: C = 2.5μF, L = 4mH, εmax = 10v 1/2 f0 = 1 / 2π(LC) = 1590 Hz Plot Pave vs f for different R values R = 2Ω R = 5Ω R = 10Ω P Resonance ave R = 20Ω ff= 0 f / f0 PHY2054: Chapter 21 22 Resonance Tuner is Based on Resonance Vary C to set resonance frequency to 103.7 (ugh!) Circuit response Q = 500 Other radio stations. Tune for f = 103.7 MHz RLC response is less PHY2054: Chapter 21 23 Quiz ÎA generator produces current at a frequency of 60 Hz with peak voltage and current amplitudes of 100V and 10A, respectively. What is the average power produced if they are in phase? (1) 1000 W (2) 707 W 1 (3) 1414 W Pave==2 εε peakII peak rms rms (4) 500 W (5) 250 W PHY2054: Chapter 21 24 Quiz ÎThe figure shows the current and emf of a series RLC circuit. To increase the rate at which power is delivered to the resistive load, which option should be taken? (1) Increase R (2) Decrease L (3) Increase L (4) Increase C XX− tanφ = LC R Current lags applied emf (φ > 0), thus circuit is inductive. Either (1) Reduce XL by decreasing L or (2) Cancel XL by increasing XC (decrease C). PHY2054: Chapter 21 25 Example: LR Circuit ÎVariable frequency EMF source with εm=6V connected to a resistor and inductor. R=80Ω and L=40mH. At what frequency f does VR = VL? XLRL ==⇒=ω ωπ2000 f = 2000/ 2 = 318Hz At that frequency, what is phase angle φ? tanφ ==⇒=°XRL / 1φ 45 What is the current amplitude and RMS value? 22 Imax=+==ε max / 80 80 6/113 0.053A IIrms== max / 2 0.037A it= 0.053sin(ω −° 45 ) PHY2054: Chapter 21 26 Transformers ÎPurpose: change alternating (AC) voltage to a bigger (or smaller) value Input AC voltage Changing flux in in the “primary” “secondary” turns turns produces a flux induces an emf ΔΦ ΔΦ B VN= B VNss= ppΔt Δt Ns VVsp= N p PHY2054: Chapter 21 27 Transformers ÎNothing comes for free, however! Increase in voltage comes at the cost of current. Output power cannot exceed input power! power in = power out (Losses usually account for 10-20%) iVp pss= iV i VN s ==pp iVNps s PHY2054: Chapter 21 28 Transformers: Sample Problem ÎA transformer has 330 primary turns and 1240 secondary turns.
Recommended publications
  • LABORATORY 3: Transient Circuits, RC, RL Step Responses, 2Nd Order Circuits
    Alpha Laboratories ECSE-2010 LABORATORY 3: Transient circuits, RC, RL step responses, 2nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators 1st order RC, RL Circuits 2nd order RLC series, parallel circuits Thevenin circuits Part A: Transient Circuits RC Time constants: A time constant is the time it takes a circuit characteristic (Voltage for example) to change from one state to another state. In a simple RC circuit where the resistor and capacitor are in series, the RC time constant is defined as the time it takes the voltage across a capacitor to reach 63.2% of its final value when charging (or 36.8% of its initial value when discharging). It is assume a step function (Heavyside function) is applied as the source. The time constant is defined by the equation τ = RC where τ is the time constant in seconds R is the resistance in Ohms C is the capacitance in Farads The following figure illustrates the time constant for a square pulse when the capacitor is charging and discharging during the appropriate parts of the input signal. You will see a similar plot in the lab. Note the charge (63.2%) and discharge voltages (36.8%) after one time constant, respectively. Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 1 Alpha Laboratories ECSE-2010 Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 2 Alpha Laboratories ECSE-2010 Discovery Board: For most of the remaining class, you will want to compare input and output voltage time varying signals.
    [Show full text]
  • Experiment 12: AC Circuits - RLC Circuit
    Experiment 12: AC Circuits - RLC Circuit Introduction An inductor (L) is an important component of circuits, on the same level as resistors (R) and capacitors (C). The inductor is based on the principle of inductance - that moving charges create a magnetic field (the reverse is also true - a moving magnetic field creates an electric field). Inductors can be used to produce a desired magnetic field and store energy in its magnetic field, similar to capacitors being used to produce electric fields and storing energy in their electric field. At its simplest level, an inductor consists of a coil of wire in a circuit. The circuit symbol for an inductor is shown in Figure 1a. So far we observed that in an RC circuit the charge, current, and potential difference grew and decayed exponentially described by a time constant τ. If an inductor and a capacitor are connected in series in a circuit, the charge, current and potential difference do not grow/decay exponentially, but instead oscillate sinusoidally. In an ideal setting (no internal resistance) these oscillations will continue indefinitely with a period (T) and an angular frequency ! given by 1 ! = p (1) LC This is referred to as the circuit's natural angular frequency. A circuit containing a resistor, a capacitor, and an inductor is called an RLC circuit (or LCR), as shown in Figure 1b. With a resistor present, the total electromagnetic energy is no longer constant since energy is lost via Joule heating in the resistor. The oscillations of charge, current and potential are now continuously decreasing with amplitude.
    [Show full text]
  • ELECTRICAL CIRCUIT ANALYSIS Lecture Notes
    ELECTRICAL CIRCUIT ANALYSIS Lecture Notes (2020-21) Prepared By S.RAKESH Assistant Professor, Department of EEE Department of Electrical & Electronics Engineering Malla Reddy College of Engineering & Technology Maisammaguda, Dhullapally, Secunderabad-500100 B.Tech (EEE) R-18 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY II Year B.Tech EEE-I Sem L T/P/D C 3 -/-/- 3 (R18A0206) ELECTRICAL CIRCUIT ANALYSIS COURSE OBJECTIVES: This course introduces the analysis of transients in electrical systems, to understand three phase circuits, to evaluate network parameters of given electrical network, to draw the locus diagrams and to know about the networkfunctions To prepare the students to have a basic knowledge in the analysis of ElectricNetworks UNIT-I D.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C circuits (Series and parallel combinations) for D.C. excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - II A.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C Series circuits for sinusoidal excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - III THREE PHASE CIRCUITS: Phase sequence, Star and delta connection, Relation between line and phase voltages and currents in balanced systems, Analysis of balanced and Unbalanced three phase circuits UNIT – IV LOCUS DIAGRAMS & RESONANCE: Series and Parallel combination of R-L, R-C and R-L-C circuits with variation of various parameters.Resonance for series and parallel circuits, concept of band width and Q factor. UNIT - V NETWORK PARAMETERS:Two port network parameters – Z,Y, ABCD and hybrid parameters.Condition for reciprocity and symmetry.Conversion of one parameter to other, Interconnection of Two port networks in series, parallel and cascaded configuration and image parameters.
    [Show full text]
  • Lecture 4: RLC Circuits and Resonant Circuits
    Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: ● What's VR? ◆ Simplest way to solve for V is to use voltage divider equation in complex notation: V R X L X C V = in R R + XC + XL L C R Vin R = Vin = V0 cosω t 1 R + + jωL jωC ◆ Using complex notation for the apply voltage V = V cosωt = Real(V e jωt ): j t in 0 0 V e ω R V = 0 R $ 1 ' € R + j& ωL − ) % ωC ( ■ We are interested in the both the magnitude of VR and its phase with respect to Vin. ■ First the magnitude: jωt V0e R € V = R $ 1 ' R + j& ωL − ) % ωC ( V R = 0 2 2 $ 1 ' R +& ωL − ) % ωC ( K.K. Gan L4: RLC and Resonance Circuits 1 € ■ The phase of VR with respect to Vin can be found by writing VR in purely polar notation. ❑ For the denominator we have: 0 * 1 -4 2 ωL − $ 1 ' 2 $ 1 ' 2 1, /2 R + j& ωL − ) = R +& ωL − ) exp1 j tan− ωC 5 % C ( % C( , R / ω ω 2 , /2 3 + .6 ❑ Define the phase angle φ : Imaginary X tanφ = Real X € 1 ωL − = ωC R ❑ We can now write for VR in complex form: V R e jωt V = o R 2 € jφ 2 % 1 ( e R +' ωL − * Depending on L, C, and ω, the phase angle can be & ωC) positive or negative! In this example, if ωL > 1/ωC, j(ωt−φ) then VR(t) lags Vin(t). = VR e ■ Finally, we can write down the solution for V by taking the real part of the above equation: j(ωt−φ) V R e V R cos(ωt −φ) V = Real 0 = 0 R 2 2 € 2 % 1 ( 2 % 1 ( R +' ωL − * R +' ωL − * & ωC ) & ωC ) K.K.
    [Show full text]
  • Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec
    Physics 121 - Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec. 3 - 8 • The Series RLC Circuit. Amplitude and Phase Relations • Phasor Diagrams for Voltage and Current • Impedance and Phasors for Impedance • Resonance • Power in AC Circuits, Power Factor • Examples • Transformers • Summaries Copyright R. Janow – Fall 2013 Current & voltage phases in pure R, C, and L circuits Current is the same everywhere in a single branch (including phase) Phases of voltages in elements are referenced to the current phasor • Apply sinusoidal voltage E (t) = EmCos(wDt) • For pure R, L, or C loads, phase angles are 0, +p/2, -p/2 • Reactance” means ratio of peak voltage to peak current (generalized resistances). VR& iR in phase VC lags iC by p/2 VL leads iL by p/2 Resistance Capacitive Reactance Inductive Reactance 1 V /i R Vmax /iC C Vmax /iL L wDL max R wDC Copyright R. Janow – Fall 2013 The impedance is the ratio of peak EMF to peak current peak applied voltage Em Z [Z] ohms peak current that flows im 2 2 2 Magnitude of Em: Em VR (VL VC) 1 Reactances: L wDL C wDC L VL /iL C VC /iC R VR /iR im iR,max iL,max iC,max For series LRC circuit, divide Em by peak current 2 2 1/2 Applies to a single Magnitude of Z: Z [ R (L C) ] branch with L, C, R VL VC L C Phase angle F: tan(F) see diagram VR R F measures the power absorbed by the circuit: P Em im Em im cos(F) • R ~ 0 tiny losses, no power absorbed im normal to Em F ~ +/- p/2 • XL=XC im parallel to Em F 0 Z=R maximum currentCopyright (resonance) R.
    [Show full text]
  • AC Power • Resonant Circuits • Phasors (2-Dim Vectors, Amplitude and Phase) What Is Reactance ? You Can Think of It As a Frequency-Dependent Resistance
    Physics-272 Lecture 20 • AC Power • Resonant Circuits • Phasors (2-dim vectors, amplitude and phase) What is reactance ? You can think of it as a frequency-dependent resistance. 1 For high ω, χ ~0 X = C C ωC - Capacitor looks like a wire (“short”) For low ω, χC∞ - Capacitor looks like a break For low ω, χL~0 - Inductor looks like a wire (“short”) XL = ω L For high ω, χL∞ - Inductor looks like a break (inductors resist change in current) ("XR "= R ) An RL circuit is driven by an AC generator as shown in the figure. For what driving frequency ω of the generator, will the current through the resistor be largest a) ω large b) ω small c) independent of driving freq. The current amplitude is inversely proportional to the frequency of the ω generator. (X L= L) Alternating Currents: LRC circuit Figure (b) has XL>X C and (c) has XL<X C . Using Phasors, we can construct the phasor diagram for an LRC Circuit. This is similar to 2-D vector addition. We add the phasors of the resistor, the inductor, and the capacitor. The inductor phasor is +90 and the capacitor phasor is -90 relative to the resistor phasor. Adding the three phasors vectorially, yields the voltage sum of the resistor, inductor, and capacitor, which must be the same as the voltage of the AC source. Kirchoff’s voltage law holds for AC circuits. Also V R and I are in phase. Phasors R ε ω Problem : Given Vdrive = m sin( t), C L find VR, VL, VC, IR, IL, IC ε ∼ Strategy : We will use Kirchhoff’s voltage law that the (phasor) sum of the voltages VR, VC, and VL must equal Vdrive .
    [Show full text]
  • Chapter 14 Frequency Response
    CHAPTER 14 FREQUENCYRESPONSE One machine can do the work of fifty ordinary men. No machine can do the work of one extraordinary man. — Elbert G. Hubbard Enhancing Your Career Career in Control Systems Control systems are another area of electrical engineering where circuit analysis is used. A control system is designed to regulate the behavior of one or more variables in some desired manner. Control systems play major roles in our everyday life. Household appliances such as heating and air-conditioning systems, switch-controlled thermostats, washers and dryers, cruise controllers in automobiles, elevators, traffic lights, manu- facturing plants, navigation systems—all utilize control sys- tems. In the aerospace field, precision guidance of space probes, the wide range of operational modes of the space shuttle, and the ability to maneuver space vehicles remotely from earth all require knowledge of control systems. In the manufacturing sector, repetitive production line opera- tions are increasingly performed by robots, which are pro- grammable control systems designed to operate for many hours without fatigue. Control engineering integrates circuit theory and communication theory. It is not limited to any specific engi- neering discipline but may involve environmental, chemical, aeronautical, mechanical, civil, and electrical engineering. For example, a typical task for a control system engineer might be to design a speed regulator for a disk drive head. A thorough understanding of control systems tech- niques is essential to the electrical engineer and is of great value for designing control systems to perform the desired task. A welding robot. (Courtesy of Shela Terry/Science Photo Library.) 583 584 PART 2 AC Circuits 14.1 INTRODUCTION In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a circuit with a constant frequency source.
    [Show full text]
  • Chapter 31: RLC Circuits
    Chapter 31: RLC Circuits PHY2049: Chapter 31 1 Topics ÎLC Oscillations Conservation of energy ÎDamped oscillations in RLC circuits Energy loss ÎAC current RMS quantities ÎForced oscillations Resistance, reactance, impedance Phase shift Resonant frequency Power ÎTransformers Impedance matching PHY2049: Chapter 31 2 LC Oscillations ÎWork out equation for LC circuit (loop rule) qdi C −−L =0 L Cdt ÎRewrite using i = dq/dt dq22 q dq 1 Lq+=⇒00 +ω 2 = ω = dt22C dt LC ω (angular frequency) has dimensions of 1/t ÎIdentical to equation of mass on spring dx22 dx k mkx+=⇒00 +ω 2 x = ω = dt22 dt m PHY2049: Chapter 31 3 LC Oscillations (2) ÎSolution is same as mass on spring ⇒ oscillations k qq=+max cos()ω tθ ω = m qmax is the maximum charge on capacitor θ is an unknown phase (depends on initial conditions) ÎCalculate current: i = dq/dt iq=−ω maxsin(ωθ t +) =− i max sin( ωθ t + ) ÎThus both charge and current oscillate Angular frequency ω, frequency f = ω/2π Period: T = 2π/ω PHY2049: Chapter 31 4 Plot Charge and Current vs t ω =12T = π qt( ) it( ) PHY2049: Chapter 31 5 Energy Oscillations ÎTotal energy in circuit is conserved. Let’s see why di q L +=0 Equation of LC circuit dt C di q dq Li+=0 Multiply by i = dq/dt dt C dt 2 Ld221 d dx dx iq+=0 Use = 2x 22dt( ) C dt ( ) dt dt 2 2 dq⎛⎞ 112 q 11Li2 +=0 Li +=const ⎜⎟22 22C dt⎝⎠ C UL + UC = const PHY2049: Chapter 31 6 Oscillation of Energies ÎEnergies can be written as (using ω2 = 1/LC) 2 2 q q 2 Ut==max cos ()ω +θ C 22CC 2 2222q 2 ULiLq==11ω sin()ωθ t +=max sin () ωθ t + L 22max 2C q2 ÎConservation
    [Show full text]
  • MAGNETIC FIELD SHIELDING by METAMATERIALS Mustafa Boyvat
    Progress In Electromagnetics Research, Vol. 136, 647{664, 2013 MAGNETIC FIELD SHIELDING BY METAMATERIALS Mustafa Boyvat* and Christian Hafner Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland Abstract|Magnetic ¯eld shielding at low frequencies is a problem of high importance that is known for a long time. Metamaterials, which are known from fancy applications such as the so-called perfect lens and cloaking, also o®er a new way to create e±cient magnetic shielding by means of anisotropic metamaterials with low permeability in one direction. Such metamaterials can be constructed by assembling arrays of relatively simple LC circuits. In this paper, we analyze di®erent metamaterials and show how they may be designed. We show that typical resistive losses in the coils and capacitors of the LC circuits reduce the shielding quality. Then, we consider the possibility of active electronic loss compensation and discuss the drawbacks of this concept. After this, we propose a purely passive way that bene¯ts from the inhomogeneity of the magnetic ¯eld to be shielded. Finally, we present experimental results, which show the performance of metamaterial shields. 1. INTRODUCTION Metamaterials are materials which can provide unusual or extraordi- narily strong electromagnetic properties, which cannot be found in natural materials [1, 2]. In 2000, Pendry theoretically showed that one can make a perfect lens, which is not limited by di®raction limit, by using metamaterials with negative permittivity and negative perme- ability [3]. After this, metamaterials attracted much attention and also experimental work has been done to demonstrate negative refrac- tion and superlensing e®ects [4{9].
    [Show full text]
  • Frequency Responses in RLC Circuits
    Frequency Responses in RLC Circuits Dalton Eaton and Uladzimir Kasacheuski Indiana University - Purdue University Indianapolis (Dated: February 11, 2017) The bandpass filter and the notch filter, the 'inverse' of the bandpass filter, are circuits for valued for their utility in attenuating specific frequencies of a signal. In this paper we create the two filters, in the forms of resistor-inductor-capacitor (RLC) circuits, and examine both circuits from experimental and theoretical views. The filters are shown to accurately attenuated selective frequencies based on chosen component values. The results demonstrate that these filters are highly predictable: the theoretical and experimental values match very well even in non-ideal circumstances. I. INTRODUCTION AND BACKGROUND X = j!L (1) Filters are commonly used circuits for the selective L attenuation of specific frequencies. A band-pass filter is designed to attenuate all frequencies except those lying within a certain band. A notch filter, or band-reject XC = −1=(j!C) (2) filter, is the 'inverse' of the band pass filter; all frequen- cies are passed in a notch filter except for those lying Equations 1 and 2 determine the impedance of the in- with a certain range, the 'notch'. An RLC circuit is a ductor and capacitor, the analogue of resistance for the simple yet effective method for the construction of both transient components of the two. At a specific value of ! of these common and powerful filters. designated by !o, the two terms will be equal and oppo- site. Using Ohm's law, the voltage found on the capaci- tor and inductor will sum to zero and thus Vsource will be equivalent to the voltage found across the resistor.
    [Show full text]
  • Chapter 32 Lecture
    3/25/2019 PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/ E Chapter 32 Lecture RANDALL D. KNIGHT Chapter 32 AC Circuits IN THIS CHAPTER, you will learn about and analyze AC circuits. © 2017 Pearson Education, Inc. Slide 32-2 Chapter 32 Preview © 2017 Pearson Education, Inc. Slide 32-3 1 3/25/2019 Chapter 32 Preview © 2017 Pearson Education, Inc. Slide 32-4 Chapter 32 Preview © 2017 Pearson Education, Inc. Slide 32-5 Chapter 32 Preview © 2017 Pearson Education, Inc. Slide 32-6 2 3/25/2019 Chapter 32 Preview © 2017 Pearson Education, Inc. Slide 32-7 Chapter 32 Reading Questions © 2017 Pearson Education, Inc. Slide 32-8 Reading Question 32.1 In Chapter 32, “AC” stands for A. Air cooling. B. Air conditioning. C. All current. D. Alternating current. E. Analog current. © 2017 Pearson Education, Inc. Slide 32-9 3 3/25/2019 Reading Question 32.1 In Chapter 32, “AC” stands for A. Air cooling. B. Air conditioning. C. All current. D. Alternating current. E. Analog current. © 2017 Pearson Education, Inc. Slide 32-10 Reading Question 32.2 The analysis of AC circuits uses a rotating vector called a A. Rotor. B. Wiggler. C. Phasor. D. Motor. E. Variator. © 2017 Pearson Education, Inc. Slide 32-11 Reading Question 32.2 The analysis of AC circuits uses a rotating vector called a A. Rotor. B. Wiggler. C. Phasor. D. Motor. E. Variator. © 2017 Pearson Education, Inc. Slide 32-12 4 3/25/2019 Reading Question 32.3 In a capacitor, the peak current and peak voltage are related by the A.
    [Show full text]
  • Last Time: LRC Circuits with Phasors…
    Last time: LRC Circuits with phasors… I X where . R L εm XLL ≡ ω C L ⇒ φ IR 1 ∼ X C ≡ I XC ωC ε The phasor diagram gives us graphical solutions for φ and I: 2 2 2 2 ε=IRXXm ( +( LC − ) ) I XL I XC εm ⇓ φ 2 2 XX− I=ε m R + X()LC − X = IZ IR tanφ = LC R 2 2 ZRXX≡ +()LC − LRC series circuit; Summary of instantaneous Current and voltages VR = IR VL = IXL VC = IXC i t()= Icos (ω ) t I XL vR t()= IRcos (ω ) t ε 1 m v t()= IXcos (ω− t ) 90 = cos I ()ωt − 90 C C ωC v tL ()= IXcosL (ω+ t ) 90ω = cos I L( ω+ ) 90 t IR tε()= v t() = ω IZcos (+ φ ) t = εcos (t ω+ ) φ ad m I XC VVLC− ωLC−1 / ω 2 2 tanφ = = ZXXX=(()R + LC - ) VR R Lagging & Leading The phase φ between the current and the driving emf depends on the relative magnitudes of the inductive and capacitive reactances. XL≡ ω ε XXLC− L m tan φ = I = 1 Z R X ≡ C ω C XL Z XL XL φ Z R φ R R Z XC XC XC XL > XC XL < XC XL = XC φ > 0 φ < 0 φ = 0 current current current LAGS LEADS IN PHASE WITH applied voltage applied voltage applied voltage Lecture 19, Act 2 2A A series RC circuit is driven by emf ε. Which of the following could be an appropriate phasor ~ diagram? V ε L εm m VC VR VR VR V C εm VC (a) (b) (c) 2B For this circuit which of the following is true? (a) The drive voltage is in phase with the current.
    [Show full text]