Harmonic Intonation and Implication

Total Page:16

File Type:pdf, Size:1020Kb

Harmonic Intonation and Implication University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2006 HARMONIC INTONATION AND IMPLICATION (ANALYSES AND COMPOSITIONS): Harmonic perception and intonation in the reception and performance of alternative tuning systems in contemporary composition SWOGER-RUSTON, JOHN PAUL http://hdl.handle.net/10026.1/2473 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. HARMONIC INTONATION AND IMPLICATION (ANALYSES AND COMPOSITIONS): Harmonic perception and intonation in the reception and performance of alternative tuning systems in contemporary composition. Volume 1 of2 by JOHN PAUL SWOGER-RUSTON A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY Dartington College of Arts 2 ABSTRACT John Paul Swoger-Ruston HARMONIC INTONATION AND IMPLICATION (ANALYSES AND COMPOSITIONS): Harmonic perception and intonation in the reception and performance of alternative tuning systems in contemporary composition Most composers and theorists will acknowledge that some compromise is necessary when dealing with the limitations of human performance, perception, and the realities of acoustic theory. Identifying the thresholds for pitch discrimination and execution is an important point of departure for defining workable tuning schemes, and for training musicians to realise compositions in just intonation and other alternative tuning systems. The submitted paper 'HARMONIC INTONATION AND IMPLICATION (ANALYSES AND COMPOSITIONS): Harmonic perception and intonation in the reception and performance of alternative tuning systems in contemporary composition' is a phenomenological study of harmonic perception and intonation through the analysis of recordings, scores, theoretical papers, and discussion with practicing musicians. The examined repertoire covers western 'art' music of the late nineteenth to early twenty-first centuries. I approach my research from the composer's point of view though filtered through the ears and eyes of the performer, who is here considered 'expert listener'. lt is considered that intonation is a dynamic experience subject to influences beyond just intonation or equal temperament (the two poles for intonational reference}-the performance is assumed 'correct', rather than the idealised version of the composer. My goal is to relate the performance to the intentions of the composer and raise questions regarding the choice of notation, resolution of the tuning systems, the complexity of the harmonic concept, etc. and perhaps to suggest how to extend a general theory of harmony that embraces both musical practice and psychoacoustics. lt is with the understanding that harmonic implication affects intonation, but that intonation is subject to several other forces making intonation a complex system (and therefore not fully predictable). 3 LIST OF CONTENTS ABSTRACT ............................................................................................................................................... 3 LIST OF CONTENTS ............................................................................................................................... 4 LIST OF FIGURES ................................................................................................................................... 6 LIST OF TABLES ................................................................................................................................... 10 CD TRACK LISTINGS........................................................................................................................... 11 BOUND IN SCORES (IN VOLUME 2 OF 2) AND RECORDINGS (CD) ............................................ 15 ACKNOWLEDGEMENTS ..................................................................................................................... 16 AUTHOR'S DECLARATION ................................................................................................................ 18 PERFORMANCES OF COMPOSITIONS ......................................................................................................... 18 PRESENTATIONS AND CONFERENCES ATTENDED ..................................................................................... 19 AWARDS ............................................................................................................................................... 19 INTRODUCTION ................................................................................................................................... 20 SECTION 1 HARMONIC INTONATION AND IMPLICATION .................................................. 28 SOME PRELIMINARY NOTES ................................................................................................................... 28 METHODS OF ANALYSIS ......................................................................................................................... 30 PSYCHOACOUSTIC CONCEPTS OF CONSONANCE AND DISSONANCE .......................................................... 40 I. TWELVE-TONE EQUAL TEMPERAMENT .......................................................................................... 43 2 QUARTERTONES ........................................................................................................................... 86 A 2 THE HARMONIC IMPLICATION OF QUARTERTONES IN IVES' CHORALE.. ....................................... 87 3 EIGHTH-TONES ............................................................................................................................. 91 A3 PROLOGUE FOR VIOLA, GERARD GRISEY (I 978) ......................................................................... 94 4 TWELFTH TONES (72TET) ............................................................................................................ I 00 5 OTHER 'N'-TETS ......................................................................................................................... I03 6 JUST INTONATION ....................................................................................................................... I 06 A6 JUST INTONATION IN ANALYSIS .............................................................................................. Ill 7 PITCH CLUSTERS AND SOUND MASSES ........................................................................................ 122 A 7 PITCH CLUSTERS IN ANALYSIS ............................................................................................... 122 THOUGHTS, OBSERVATIONS, HYPOTHESES, AND CONCLUSIONS ............................................................ 126 4 SECTION U COMPOSITIONS ..........•.....................•.......•....................................•........................ 131 INTRODUCTION .................................................................................................................................... 131 MY BACKGROUND AND INFLUENCES ..................................................................................................... 133 I. [ DREW A LINE IN THE SAND, AND IT GOES FROM HERE TO THERE ................................................... 136 n. THE BEATEN PATH ..................................................................................................................... 141 Ill. I 024 TO 1 ................................................................................................................................... 143 IV. FOR MUTED PIAN0 ..................................................................................................................... 144 V. TRACKANDFIELD ...................................................................................................................... I49 VI. EVENTIDE .............................................................................................................................. I52 VU. THE CROW, THE ROAD, AND THE RAMBLE .............................................................................. 156 VU!. CORRECTIONS AND AMPLIFICATIONS ...................................................................................... 160 IX. THIS MNEMONIC MACHINE .................................................................................................... 163 OBSERVATIONS REGARDING MY COMPOSIT!ONAL PRACTICE ................................................................ 165 APPENDIX 1- GLOSSARY ................................................................................................................. 173 APPENDIX 2- DATA FROM THE ANALYSIS OF FIVE MOVEMENTS FOR STRING QUARTET- V, OP.5 (ANTON WEBERN) ...........•........................................................................................................ 179 INTONATION OF MELODIC PASSAGE (BARS I AND 2) BY FOUR QUARTETS ............................................... 179 INTONATION OF VERTICAL CHORDS (BARS 3 AND 4) BY THREE QUARTETS ............................................... 179 APPENDIX 3- DATA FROM 'COMPANY' ANALYSIS ...............................................••..............•... 181 APPENDIX 4- GRISEY ANALYSIS DATA .................•.............•............................................•.........
Recommended publications
  • The Swinging Spring: Regular and Chaotic Motion
    References The Swinging Spring: Regular and Chaotic Motion Leah Ganis May 30th, 2013 Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Outline of Talk I Introduction to Problem I The Basics: Hamiltonian, Equations of Motion, Fixed Points, Stability I Linear Modes I The Progressing Ellipse and Other Regular Motions I Chaotic Motion I References Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Introduction The swinging spring, or elastic pendulum, is a simple mechanical system in which many different types of motion can occur. The system is comprised of a heavy mass, attached to an essentially massless spring which does not deform. The system moves under the force of gravity and in accordance with Hooke's Law. z y r φ x k m Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics We can write down the equations of motion by finding the Lagrangian of the system and using the Euler-Lagrange equations. The Lagrangian, L is given by L = T − V where T is the kinetic energy of the system and V is the potential energy. Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics In Cartesian coordinates, the kinetic energy is given by the following: 1 T = m(_x2 +y _ 2 +z _2) 2 and the potential is given by the sum of gravitational potential and the spring potential: 1 V = mgz + k(r − l )2 2 0 where m is the mass, g is the gravitational constant, k the spring constant, r the stretched length of the spring (px2 + y 2 + z2), and l0 the unstretched length of the spring.
    [Show full text]
  • Naming a Chord Once You Know the Common Names of the Intervals, the Naming of Chords Is a Little Less Daunting
    Naming a Chord Once you know the common names of the intervals, the naming of chords is a little less daunting. Still, there are a few conventions and short-hand terms that many musicians use, that may be confusing at times. A few terms are used throughout the maze of chord names, and it is good to know what they refer to: Major / Minor – a “minor” note is one half step below the “major.” When naming intervals, all but the “perfect” intervals (1,4, 5, 8) are either major or minor. Generally if neither word is used, major is assumed, unless the situation is obvious. However, when used in naming extended chords, the word “minor” usually is reserved to indicate that the third of the triad is flatted. The word “major” is reserved to designate the major seventh interval as opposed to the minor or dominant seventh. It is assumed that the third is major, unless the word “minor” is said, right after the letter name of the chord. Similarly, in a seventh chord, the seventh interval is assumed to be a minor seventh (aka “dominant seventh), unless the word “major” comes right before the word “seventh.” Thus a common “C7” would mean a C major triad with a dominant seventh (CEGBb) While a “Cmaj7” (or CM7) would mean a C major triad with the major seventh interval added (CEGB), And a “Cmin7” (or Cm7) would mean a C minor triad with a dominant seventh interval added (CEbGBb) The dissonant “Cm(M7)” – “C minor major seventh” is fairly uncommon outside of modern jazz: it would mean a C minor triad with the major seventh interval added (CEbGB) Suspended – To suspend a note would mean to raise it up a half step.
    [Show full text]
  • New Masters at the Brooklyn Academy of Music
    - NEW MASTERSAT THE BROOKLYNACADEMY OF MUSIC News Contact: Ellen Lampert/212.636.4123 FOR IMMEDIATE RELEASE December 13, 1982 Contacts: Ellen Lampert Susan Spier (212) 636-4123 Glenn Branca will present the world premiere of his SYMPHONY NO. 3 (Gloria) at the Brooklyn Academy of Music, January 13-16 as part of BAM's NEXT WAVE series. Performances in the Helen Owen Carey Playhouse will be Thursday through Saturday evenings (January 13-15) at 8:00pm and Sunday (January 16) at 2:00pm. SYMPHONY NO. 3 (Gloria) will continue Branca's use of home-made instruments, as exhibited in the electric stringed instruments he used in SYMPHONY No. 2 at St. Mark's Church last year. For SYMPHONY NO. 3, Branca has designed keyboard instruments which have been built by David Quinlan, a professional builder of harpsichords and folk instruments. The sixteen musicians for SYMPHONY No. 3 include Branca himself plus Jeffrey Glenn, Lee Ranaldo, Thurston Moore, Barbara Ess, David Quinlan, Craig Bromberg, and Stephen Wischerth on drums. Branca, tagged an "art-rocker" for his new music/rock experimentation, formed an experimental rock quintet with Jeffrey Lohn in 1977, called the Theoretical Girls. His next group was called The Static, a guitar-based trio, with which he moved from rock clubs to performances in alternative art spaces such as The Performing Garage. Known for the theatricality of his performances, Branca has toured throughout the U.S. and Eu rope with The Glenn Branca Group, a,,,J li.::!LO,dcd l'NO d;i.:.urns ·for 9;-j f<.eccrds, 'Lesson No.
    [Show full text]
  • MUSIC THEORY UNIT 5: TRIADS Intervallic Structure of Triads
    MUSIC THEORY UNIT 5: TRIADS Intervallic structure of Triads Another name of an interval is a “dyad” (two pitches). If two successive intervals (3 notes) happen simultaneously, we now have what is referred to as a chord or a “triad” (three pitches) Major and Minor Triads A Major triad consists of a M3 and a P5 interval from the root. A minor triad consists of a m3 and a P5 interval from the root. Diminished and Augmented Triads A diminished triad consists of a m3 and a dim 5th interval from the root. An augmented triad consists of a M3 and an Aug 5th interval from the root. The augmented triad has a major third interval and an augmented fifth interval from the root. An augmented triad differs from a major triad because the “5th” interval is a half-step higher than it is in the major triad. The diminished triad differs from minor triad because the “5th” interval is a half-step lower than it is in the minor triad. Recommended process: 1. Memorize your Perfect 5th intervals from most root pitches (ex. A-E, B-F#, C-G, D-A, etc…) 2. Know that a Major 3rd interval is two whole steps from a root pitch If you can identify a M3 and P5 from a root, you will be able to correctly spell your Major Triads. 3. If you need to know a minor triad, adjust the 3rd of the major triad down a half step to make it minor. 4. If you need to know an Augmented triad, adjust the 5th of the chord up a half step from the MAJOR triad.
    [Show full text]
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
    Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr.
    [Show full text]
  • Echo-Enabled Harmonics up to the 75Th Order from Precisely Tailored Electron Beams E
    LETTERS PUBLISHED ONLINE: 6 JUNE 2016 | DOI: 10.1038/NPHOTON.2016.101 Echo-enabled harmonics up to the 75th order from precisely tailored electron beams E. Hemsing1*,M.Dunning1,B.Garcia1,C.Hast1, T. Raubenheimer1,G.Stupakov1 and D. Xiang2,3* The production of coherent radiation at ever shorter wave- phase-mixing transformation turns the sinusoidal modulation into lengths has been a long-standing challenge since the invention a filamentary distribution with multiple energy bands (Fig. 1b). 1,2 λ of lasers and the subsequent demonstration of frequency A second laser ( 2 = 2,400 nm) then produces an energy modulation 3 ΔE fi doubling . Modern X-ray free-electron lasers (FELs) use relati- ( 2) in the nely striated beam in the U2 undulator (Fig. 1c). vistic electrons to produce intense X-ray pulses on few-femto- Finally, the beam travels through the C2 chicane where a smaller 4–6 R(2) second timescales . However, the shot noise that seeds the dispersion 56 brings the energy bands upright (Fig. 1d). amplification produces pulses with a noisy spectrum and Projected into the longitudinal space, the echo signal appears as a λ λ h limited temporal coherence. To produce stable transform- series of narrow current peaks (bunching) with separation = 2/ limited pulses, a seeding scheme called echo-enabled harmonic (Fig. 1e), where h is a harmonic of the second laser that determines generation (EEHG) has been proposed7,8, which harnesses the character of the harmonic echo signal. the highly nonlinear phase mixing of the celebrated echo EEHG has been examined experimentally only recently and phenomenon9 to generate coherent harmonic density modu- at modest harmonic orders, starting with the 3rd and 4th lations in the electron beam with conventional lasers.
    [Show full text]
  • Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda
    Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda • Introduction to the elastic pendulum problem • Derivations of the equations of motion • Real-life examples of an elastic pendulum • Trivial cases & equilibrium states • MATLAB models The Elastic Problem (Simple Harmonic Motion) 푑2푥 푑2푥 푘 • 퐹 = 푚 = −푘푥 = − 푥 푛푒푡 푑푡2 푑푡2 푚 • Solve this differential equation to find 푥 푡 = 푐1 cos 휔푡 + 푐2 sin 휔푡 = 퐴푐표푠(휔푡 − 휑) • With velocity and acceleration 푣 푡 = −퐴휔 sin 휔푡 + 휑 푎 푡 = −퐴휔2cos(휔푡 + 휑) • Total energy of the system 퐸 = 퐾 푡 + 푈 푡 1 1 1 = 푚푣푡2 + 푘푥2 = 푘퐴2 2 2 2 The Pendulum Problem (with some assumptions) • With position vector of point mass 푥 = 푙 푠푖푛휃푖 − 푐표푠휃푗 , define 푟 such that 푥 = 푙푟 and 휃 = 푐표푠휃푖 + 푠푖푛휃푗 • Find the first and second derivatives of the position vector: 푑푥 푑휃 = 푙 휃 푑푡 푑푡 2 푑2푥 푑2휃 푑휃 = 푙 휃 − 푙 푟 푑푡2 푑푡2 푑푡 • From Newton’s Law, (neglecting frictional force) 푑2푥 푚 = 퐹 + 퐹 푑푡2 푔 푡 The Pendulum Problem (with some assumptions) Defining force of gravity as 퐹푔 = −푚푔푗 = 푚푔푐표푠휃푟 − 푚푔푠푖푛휃휃 and tension of the string as 퐹푡 = −푇푟 : 2 푑휃 −푚푙 = 푚푔푐표푠휃 − 푇 푑푡 푑2휃 푚푙 = −푚푔푠푖푛휃 푑푡2 Define 휔0 = 푔/푙 to find the solution: 푑2휃 푔 = − 푠푖푛휃 = −휔2푠푖푛휃 푑푡2 푙 0 Derivation of Equations of Motion • m = pendulum mass • mspring = spring mass • l = unstreatched spring length • k = spring constant • g = acceleration due to gravity • Ft = pre-tension of spring 푚푔−퐹 • r = static spring stretch, 푟 = 푡 s 푠 푘 • rd = dynamic spring stretch • r = total spring stretch 푟푠 + 푟푑 Derivation of Equations of Motion
    [Show full text]
  • 3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
    3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch.
    [Show full text]
  • Electrophonic Musical Instruments
    G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 .
    [Show full text]
  • 2012 02 20 Programme Booklet FIN
    COMPOSITION - EXPERIMENT - TRADITION: An experimental tradition. A compositional experiment. A traditional composition. An experimental composition. A traditional experiment. A compositional tradition. Orpheus Research Centre in Music [ORCiM] 22-23 February 2012, Orpheus Institute, Ghent Belgium The fourth International ORCiM Seminar organised at the Orpheus Institute offers an opportunity for an international group of contributors to explore specific aspects of ORCiM's research focus: Artistic Experimentation in Music. The theme of the conference is: Composition – Experiment – Tradition. This two-day international seminar aims at exploring the complex role of experimentation in the context of compositional practice and the artistic possibilities that its different approaches yield for practitioners and audiences. How these practices inform, or are informed by, historical, cultural, material and geographical contexts will be a recurring theme of this seminar. The seminar is particularly directed at composers and music practitioners working in areas of research linked to artistic experimentation. Organising Committee ORCiM Seminar 2012: William Brooks (U.K.), Kathleen Coessens (Belgium), Stefan Östersjö (Sweden), Juan Parra (Chile/Belgium) Orpheus Research Centre in Music [ORCiM] The Orpheus Research Centre in Music is based at the Orpheus Institute in Ghent, Belgium. ORCiM's mission is to produce and promote the highest quality research into music, and in particular into the processes of music- making and our understanding of them. ORCiM
    [Show full text]