Portunus Sanguinolentus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Fishery and Stock of the Portunid Crab, Charybdis Feriata (Linnaeus, 1758) from Veraval Waters, North-West Coast of India
Indian J. Fish., 61(4) : 1-9, 2014 1 Analysis of fishery and stock of the portunid crab, Charybdis feriata (Linnaeus, 1758) from Veraval waters, north-west coast of India GYANARANJAN DASH, SWATIPRIYANKA SEN, K. MOHAMMED KOYA, K. R. SREENATH R. THANGAVELU, SURESH KUMAR MOJJADA AND M. S. ZALA Veraval Regional Centre of Central Marine Fisheries Research Institute, Matsya Bhavan, Bhidia, Veraval - 362 269 Gujarat, India e-mail: [email protected] ABSTRACT Fishery and stock characteristics of the portunid cab Charybdis feriata from the waters off the north-west coast of India was studied based on commercial trawl landings at Veraval during 2009-2011. Growth parameters L∞, K and -1 -1 t0 were estimated as 171.5 mm, 0.97 yr and -0.10 yr respectively. Mortality parameters Z, M and F were 3.97 yr , -1 -1 1.49 yr and 2.48 yr respectively. The length at capture (L50) and length at maturity (LM50) were 95.4 mm and 87.3 mm, respectively which indicates that crabs enter into peak exploitation phase after attaining sexual maturity. The bio-economic stock assessment model showed that the species can be exploited at the present fishing level to maintain the economy of the fishery at maximum level (MEY) or the effort can be increased by 2.4 times to maximise the yield (MSY) depending upon the management objective. However, since the stock recruitment relationship is not defined, as a precautionary approach, the effort should not be increased more than 1.3 times the present level to conserve the spawning stock. Keywords: Charybdis feriata, Fisheries management, Management reference point, Spawning stock biomass, Stock assessment Introduction the important edible marine crab resources of India. -
Development of Species-Specific Edna-Based Test Systems For
REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe). -
The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition
UC San Diego Naga Report Title The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition Permalink https://escholarship.org/uc/item/5v7289k7 Author Stephenson, W Publication Date 1967 eScholarship.org Powered by the California Digital Library University of California NAGA REPORT Volume 4, Part 1 Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961 Sponsored by South Viet Natll, Thailand and the United States of Atnerica The University of California Scripps Institution of Oceanography La Jolla, California 1967 EDITORS: EDWARD BRINTON, MILNER B. SCHAEFER, WARREN S. WOOSTER ASSISTANT EDITOR: VIRGINIA A. WYLLIE Editorial Advisors: Jorgen Knu·dsen (Denmark) James L. Faughn (USA) Le van Thoi (Viet Nam) Boon Indrambarya (Thailand) Raoul Serene (UNESCO) Printing of this volume was made possible through the support of the National Science Foundation. The NAGA Expedition was supported by the International Cooperation Administration Contract ICAc-1085. ARTS & CRAFTS PRESS, SAN DIEGO, CALIFORNIA CONTENTS The portunid crabs (Crustacea : Portunidae) collected by theNAGA Expedition by W. Stephenson ------ 4 Gammaridean Amphipoda from the South China Sea by Marilyn Clark Inlbach ---------------- 39 3 THE PORTUNID CRABS (CRUSTACEA: PORTUNIDAE) COLLECTED BY THE NAGA EXPEDITION by w. STEPHENSON* * Senior Foreign Science Fellow of the National Science Foundation, Hancock Foundation, Univer sity of Southern California, and Professor of Zoology, University of Queensland, Brisbane, Australia. THE PORTUNID CRABS ( CRUSTACEA : PORTUNIDAE) CONTENTS Systematics - - - - - 7 Literature - ----- 23 Plates 29 Appendix ------ 36 5 INTRODUCTION Although the collections of NAGA Expedition are small and contain many well-known and widely distributed species of the Indo-West Pacific area, they also contain several little-known forms (e.g. -
29 November 2005
University of Auckland Institute of Marine Science Publications List maintained by Richard Taylor. Last updated: 31 July 2019. This map shows the relative frequencies of words in the publication titles listed below (1966-Nov. 2017), with “New Zealand” removed (otherwise it dominates), and variants of stem words and taxonomic synonyms amalgamated (e.g., ecology/ecological, Chrysophrys/Pagrus). It was created using Jonathan Feinberg’s utility at www.wordle.net. In press Markic, A., Gaertner, J.-C., Gaertner-Mazouni, N., Koelmans, A.A. Plastic ingestion by marine fish in the wild. Critical Reviews in Environmental Science and Technology. McArley, T.J., Hickey, A.J.R., Wallace, L., Kunzmann, A., Herbert, N.A. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. O'Rorke, R., Lavery, S.D., Wang, M., Gallego, R., Waite, A.M., Beckley, L.E., Thompson, P.A., Jeffs, A.G. Phyllosomata associated with large gelatinous zooplankton: hitching rides and stealing bites. ICES Journal of Marine Science. Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., Butler, K., Van Graafeiland, K., Frye, C., Karagulle, D., Hopkins, D., Stephens, D., Kelly, K., Basher, Z., Burton, D., Cress, J., Atkins, K., Van Sistine, D.P., Friesen, B., Allee, R., Allen, T., Aniello, P., Asaad, I., Costello, M.J., Goodin, K., Harris, P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger, F., Nyberg, B., Parsons, R., Saarinen, J., Steiner, J., Reed, A. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. -
Charybdis Hellerii Global Invasive
FULL ACCOUNT FOR: Charybdis hellerii Charybdis hellerii System: Marine_terrestrial Kingdom Phylum Class Order Family Animalia Arthropoda Malacostraca Decapoda Portunidae Common name Indo-Pacific swimming crab (English), spiny hands (English), Ishigani New Caledonia (Japanese), New Caledonia-íshigani (Japanese) Synonym Goniosoma hellerii , (A. Milne-Edwards, 1867) Goniosoma merguiense , (DeMan, 1888) Charybdis merguiensis , (Sakai, 1934; Barnard, 1950; Guinot, 1962) Charybdis (Goniosoma) merguiense , (Alcock, 1899; Nobili, 1906, Chopra, 1935; Leene, 1973; Shen, 1937) Goniosoma sexdentatum , (De Man, 1879) Charybdis amboinensis , (Leene, 1938) Goniosoma spiniferum Charybdis vannamei , Ward 1941 Similar species Summary Charybdis hellerii is an Indo-Pacific, portunid crab that has invaded several locations in the Mediterranean Sea, by Erythrean invasion through the Suez Canal, and the South Atlantic in the Caribbean and United States via ballast water fouling. Charybdis hellerii is a potential threat to native crab populations and benthic communities and its introduction should be avoided by adhering to ballast water management guidelines. view this species on IUCN Red List Species Description Charybdis hellerii is a small crab measuring from about 5-8 cm wide. It is dark green with a light purple on the upper inner surface of palm and dark purple on dorsal surfaces of distal 4 segments of walking and swimming legs. The carapace has pale green to whitish areas on frontal, hepatic, and epibranchial regions. It is most easily identifiable by the spine on the posterior of the carpus on the fifth leg which bears its chela, or claws giving it one of its common names: spiny hands. Its dorsal carapace is naked and its anterolateral margin has 6 prominent black-tipped teeth. -
Pre-Assessment of the Thailand Blue Swimming Crab (Portunus Pelagicus) Fishery
+333 10051 5th Street N., Suite 105 St. Petersburg, Florida 33702-2211 Tel: (727) 536-9070 Fax: (727) 536-0207 Email: [email protected] President: Andrew A. Rosenberg, Ph.D. Pre-Assessment of the Thailand Blue Swimming Crab (Portunus pelagicus) Fishery Prepared for WWF-US February 2011 Richard Banks, Lead Assessor, Poseidon [email protected] Robert J. Trumble, Vice President, MRAG [email protected] Client details Stephanie Bradley Senior Program Officer World Wildlife Fund 171 Forest Avenue Palo Alto, CA 94301 office +1 650.323.3504 mobile +1 202.299.6204 [email protected] 1 Contents 1. Executive summary ........................................................................................................ 1 2. Introduction .................................................................................................................... 2 2.1 Aims/scope of pre-assessment ............................................................................ 2 2.2 Constraints to the pre-assessment of the fishery ................................................. 2 2.3 Unit(s) of certification ........................................................................................... 3 3. Description of the fishery ................................................................................................ 3 3.1 Scope of the fishery in relation to the MSC programme ....................................... 3 3.2 Overview of the fishery ....................................................................................... -
Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron -
1 Invasive Species in the Northeastern and Southwestern Atlantic
This is the author's accepted manuscript. The final published version of this work (the version of record) is published by Elsevier in Marine Pollution Bulletin. Corrected proofs were made available online on the 24 January 2017 at: http://dx.doi.org/10.1016/j.marpolbul.2016.12.048. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review Maria Cecilia T. de Castroa,b, Timothy W. Filemanc and Jason M Hall-Spencerd,e a School of Marine Science and Engineering, University of Plymouth & Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. [email protected]. +44(0)1752 633 100. b Directorate of Ports and Coasts, Navy of Brazil. Rua Te filo Otoni, 4 - Centro, 20090-070. Rio de Janeiro / RJ, Brazil. c PML Applications Ltd, Prospect Place, Plymouth, PL1 3DH, UK. d Marine Biology and Ecology Research Centre, Plymouth University, PL4 8AA, UK. e Shimoda Marine Research Centre, University of Tsukuba, Japan. Abstract The spread of non-native species has been a subject of increasing concern since the 1980s when human- as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions. -
Reproductive Biology of Blue Swimming Crab, Portunus Segnis (Forskal, 1775) in Coastal Waters of Persian Gulf and Oman Sea, Iran
Iranian Journal of Fisheries Sciences 12(2) 430-444 2013 __________________________________________________________________________________________ Reproductive biology of blue swimming crab, Portunus segnis (Forskal, 1775) in coastal waters of Persian Gulf and Oman Sea, Iran Safaie M.; Pazooki J.*; Kiabi B.; Shokri M. R. Received: July 2012 Accepted: November 2012 Abstract A reproductive biology study of blue swimming crab, Portunus segnis (Forskal, 1775) in the northern Persian Gulf and Oman Sea, was conducted from May 2010 to October 2011. The results showed that the annual sex ratio is not M: F=1:1, with 51.9 % female. All the five stages of ovarian development of P. segnis were observed throughout the year. The size of ovigerous crabs varied from 103 to 155 mm. carapace width. This crab can spawn all year round with a spawning peak in mid-winter to early of spring season. The fecundity of ovigerous crabs ranged from 521027 to 6656599 eggs, with average fecundity of 2397967 eggs. The minimum carapace width (CW) of female crabs that reach sexual maturity was 92- 138 mm and the length at which 50% of all ovigerous females was 113 mm carapace width. Keywords: Sex ratio, Sexual maturity at size, Spawning season, Fecundity, Portunus segnis, Persian Gulf, Oman Sea - Faculty of Biological Sciences, Shahid Beheshti University, G.C., Evin, Tehran, 1983963113, IR Iran *Corresponding author’s email: [email protected] 431 Safaie et al., Reproductive biology of blue swimming crab… __________________________________________________________________________________________ Introduction et al. (2010) indicating that the blue swimming crab in the study area in the Decapods crustacean form a major northern Persian Gulf is P. -
Chemical Signals in Coral Reefs - M
CHEMICAL ECOLOGY – Chemical Signals in Coral Reefs - M. Puyana CHEMICAL SIGNALS IN CORAL REEFS M. Puyana Facultad de Ciencias, Departamento de Quimica, Universidad Nacional de Colombia, Colombia Keywords: Coral reefs, pheromones, chemical defenses, chemical cues, coral reproduction, larval settlement, symbiosis, allelopathy Contents 1. Introduction 2. Chemical signaling in coral reefs 2.1 Feeding Attractants 2.2 Feeding Deterrents 2.3 Predator detection and alarm substances 2.4 Induced Defenses 2.5 Mate and kin recognition 2.6 Associational chemical defenses 2.7 Chemical signals in gamete attraction and spawning 2.8 Symbiotic associations 2.9 Larval settlement 2.10. Antifouling 2.11 Allelopathy 3. Conclusions Glossary Bibliography Biographical Sketch Summary Chemical signaling is an important communication mechanism within and between species in the marine environment. Chemical cues are of particular importance in aquatic systems since visibility can be greatly impaired by sediment load and the attenuation ofUNESCO light at greater depths. The physical – EOLSSand chemical properties in the marine environment influence the way chemical signals are produced, transported and detected, and also determine the nature and success of ecological interactions. Marine animals have very well developed chemical senses and chemical signals can help animals to identify conspecificsSAMPLE and regulate social behavior. CHAPTERS Reproductive processes such as mate recognition and synchronization in gamete, or larval release, may be highly influenced by chemical signals especially in plants and invertebrates where hormonal signaling is not complex. The establishment and maintenance of symbiotic associations as well as homing behavior may require of chemical signaling although these processes are less understood. Chemical signals are also important in food recognition and ingestion by grazers, carnivores and scavengers, predator detection and avoidance, alarm responses and deterrence of feeding behavior. -
Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-17-2017 Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality Brian Christopher Turner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Recommended Citation Turner, Brian Christopher, "Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality" (2017). Dissertations and Theses. Paper 3620. https://doi.org/10.15760/etd.5512 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality by Brian Christopher Turner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources Dissertation Committee: Catherine E. de Rivera, Chair Edwin D. Grosholz Michael T. Murphy Greg M. Ruiz Ian R. Waite Portland State University 2017 Abstract Lethal biotic interactions strongly influence the potential for aquatic non-native species to establish and endure in habitats to which they are introduced. Predators in the recipient area, including native and previously established non-native predators, can prevent establishment, limit habitat use, and reduce abundance of non-native species. Management efforts by humans using methods designed to cause mass mortality (e.g., trapping, biocide applications) can reduce or eradicate non-native populations. -
Developing a List of Invasive Alien Species Likely to Threaten Biodiversity and Ecosystems in the European Union
Received: 25 July 2018 | Accepted: 7 November 2018 DOI: 10.1111/gcb.14527 PRIMARY RESEARCH ARTICLE Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union Helen E. Roy1 | Sven Bacher2 | Franz Essl3,4 | Tim Adriaens5 | David C. Aldridge6 | John D. D. Bishop7 | Tim M. Blackburn8,9 | Etienne Branquart10 | Juliet Brodie11 | Carles Carboneras12 | Elizabeth J. Cottier-Cook13 | Gordon H. Copp14,15 | Hannah J. Dean1 | Jørgen Eilenberg16 | Belinda Gallardo17 | Mariana Garcia18 | Emili García‐Berthou19 | Piero Genovesi20 | Philip E. Hulme21 | Marc Kenis22 | Francis Kerckhof23 | Marianne Kettunen24 | Dan Minchin25 | Wolfgang Nentwig26 | Ana Nieto18 | Jan Pergl27 | Oliver L. Pescott1 | Jodey M. Peyton1 | Cristina Preda28 | Alain Roques29 | Steph L. Rorke1 | Riccardo Scalera18 | Stefan Schindler3 | Karsten Schönrogge1 | Jack Sewell7 | Wojciech Solarz30 | Alan J. A. Stewart31 | Elena Tricarico32 | Sonia Vanderhoeven33 | Gerard van der Velde34,35,36 | Montserrat Vilà37 | Christine A. Wood7 | Argyro Zenetos38 | Wolfgang Rabitsch3 1Centre for Ecology & Hydrology, Wallingford, UK 2University of Fribourg, Fribourg, Switzerland 3Environment Agency Austria, Vienna, Austria 4Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University Vienna, Vienna, Austria 5Research Institute for Nature and Forest (INBO), Brussels, Belgium 6Department of Zoology, University of Cambridge, Cambridge, UK 7The Laboratory, The Marine Biological Association, Plymouth, UK 8University College London,