Black and White Or Shades of Gray: Individual Differences in Automatic
Total Page:16
File Type:pdf, Size:1020Kb
Black and White or shades of gray: Individual differences in automatic race categorization Lori Wu Sz-Hwei Malahy A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Yuichi Shoda (Chair) Cheryl Kaiser Jason Plaks Program Authorized to Offer Degree: Psychology University of Washington Abstract Black and White or shades of gray: Individual differences in automatic race categorization Lori Wu Sz-Hwei Malahy Chair of the Supervisory Committee: Professor Yuichi Shoda Psychology This dissertation focuses on automatic race categorization (ARC), or the tendency for people to perceive others as falling into discrete racial groups rather than perceiving more continuous racial variation. Traditional research approaches treat race categorization as a binary process and assume that people perceive race as falling into discrete categories. In contrast, this research conceives of race categorization as a continuum where a person can perceive the boundary between races as strong and distinct, weak and non- existent, or anything in-between. First, I introduce a new method of measuring ARC (Sedlins, Malahy, Plaks, & Shoda, 2012). The data support the idea that people tend to see racial continua as falling into discrete categories (chapter 1: studies 1-3) and provide evidence ii that there are significant individual differences in how strongly people tend to perceive discrete race boundaries (chapter 1: study 1). The present research then examines several individual difference predictors of ARC strength: political ideology (Chapter 2: studies 1- 2), beliefs about genetic variation (Chapter 3: studies 1-2), and multiracial salience (Chapter 4: studies 1-2). Finally, the present research provides evidence that strength of ARC predicts race bias. Those with strong ARC (i.e., perceiving races as highly discrete; strong race categorizers) show greater racial bias than weaker race categorizers (Chapter 3: study 2). Together these studies provide a new approach and method to research race categorization and suggest new ways to approach prejudice and discrimination in intergroup contexts. These findings are discussed in terms of their implications for psychological science and social policy. iii TABLE OF CONTENTS Page Introduction ......................................................................................................................... 1 Chapter 1: Automatic Race Categorization: More Categorical or Continuous? ............... 18 Measuring Automatic Race Categorization: The Automatic Race Categorization Test (ARCAT) ..................................................................................................................... 18 ARCAT stimuli. ...................................................................................................... 21 Interpreting the ARCAT. ......................................................................................... 24 Does the ARCAT achieve greater psychological realism than previous tasks? ..... 26 Evidence for Strong Automatic Race Categorization .................................................. 26 Study 1: Do People Tend to Automatically Perceive Race as Falling into Discrete Categories? And Are There Individual Differences in ARC Strength? ....................... 28 Study 2: Is Automatic Categorization Stronger for Race than Stimuli that Vary in Luminance? .................................................................................................................. 37 Study 3: Generalizing ARC Beyond Black To White Continua .................................. 43 Chapter 1 General Discussion ...................................................................................... 50 Chapter 2: Political Ideology ............................................................................................ 54 Political Ideology and Intergroup Bias ........................................................................ 54 Political Ideology, Motivation to Reduce Ambiguity, and Need for Cognition .......... 56 Study 1: Relation between Political Ideology and ARC Strength ............................... 61 Study 2: Relation between Political Ideology, ARC strength, NFC, & NFCog .......... 64 Additional Relevant Data ............................................................................................. 69 Chapter 2 General Discussion ...................................................................................... 71 i Chapter 3: Genetic Folk Beliefs as predictors of ARC ..................................................... 74 People Believe that Social Groups Possess Essences .................................................. 75 People May Attribute Essential Differences Between Groups to Genetics ................. 79 Lay Genetic Beliefs and Their Perceived Relation to Traits and Group Differences .. 80 Genetic Beliefs About Differences Among People ..................................................... 83 Genetic Beliefs and ARC ............................................................................................. 84 Study 1: Relation Between Genetic Beliefs and ARC Strength .................................. 86 Study 2: Relation between ARC Strength, Genetic Beliefs and Evaluative Biases ..... 90 Chapter 4: Salience of Multiracial Concept .................................................................... 104 Multiracialism Undermines Essentialist Beliefs ........................................................ 104 Study 1: Multiracial Heritage And ARC .................................................................... 107 Study 2: Is Increased Multiracial Salience Related To ARC Strength? ..................... 114 Discussion ....................................................................................................................... 122 What Can We Conclude ............................................................................................. 122 Future Directions ........................................................................................................ 130 Implications from this Dissertation Research ............................................................ 133 Conclusion ................................................................................................................. 136 References ....................................................................................................................... 137 Appendix A: Questionnaires and task stimuli ................................................................ 174 Need for Cognition (Cacioppo, Petty, & Kao, 1984) ................................................. 175 Need for Closure (Webster & Kruglanski, 1984) ...................................................... 177 Political Ideology Measurement ................................................................................ 181 Pro-Minority & Anti-Minority (adapted from Katz & Hass, 1988) .......................... 182 ii Words in Evaluative Priming Task ............................................................................ 183 Appendix B: Additional Figures ..................................................................................... 184 iii LIST OF FIGURES Figure Number Page Figure 1.1. ARCAT Time Sequence ................................................................................ 21 Figure 1.2. White-to-Black face stimuli morphed using FantaMorph ............................. 22 Figure 1.3. White-to-Black morphed race face stimuli created with FaceGen Modeller . 23 Figure 1.4. White-to-Asian morphed race face stimuli created using FantaMorph. ........ 23 Figure 1.5. Hypothetical face confusion data for a weak ARC or a strong ARC ............ 25 Figure 1.6. Multidimensional scaling psychological map of White-to-Black continuum 27 Figure 1.7. Confusion rate across morphed-race continuum for studies in the unabbreviated meta-analysis ..................................................................................... 28 Figure 1.8. A graphical overview of the unabbreviated meta-analysis nested structure .. 32 Figure 1.9. Participants’ data pattern indicate categorical pattern of race perception ..... 34 Figure 1.10. Central tendency and individual differences of ARC confusion patterns .... 35 Figure 1.11. Stronger ARC data patterns than the average participant ............................ 36 Figure 1.12. Weaker ARC than the average participant ................................................... 36 Figure 1.13. Sample morphed-race and corresponding scrambled stimuli ...................... 40 Figure 1.14. Confusion rate for faces and scrambles continua. ........................................ 41 Figure 1.15. Graph of ARC for White-to-Asian continua split by participant race ......... 47 Figure 1.16. Confusion rate for Whitest faces and for most prototypical Asian faces among White and Asian participants ........................................................................ 47 Figure 1.17. Data from national telephone surveys conducted by the Los Angeles Times in 1991a and 2008b (Los Angeles Times, 1991; 2008). ............................................ 52 Figure 2.1. More conservative participants showed stronger ARC than more liberal participants ................................................................................................................ 64 Figure 2.2. ARC differences among more liberal and more conservative participants ... 67 iv Figure 3.1. Those who endorsed