POSTER SESSION I: ASTEROID and COMET MISSIONS: TARGETS, INSTRUMENTS, and SCIENCE 6:00 P.M

Total Page:16

File Type:pdf, Size:1020Kb

POSTER SESSION I: ASTEROID and COMET MISSIONS: TARGETS, INSTRUMENTS, and SCIENCE 6:00 P.M Lunar and Planetary Science XLVIII (2017) sess313.pdf Tuesday, March 21, 2017 [T313] POSTER SESSION I: ASTEROID AND COMET MISSIONS: TARGETS, INSTRUMENTS, AND SCIENCE 6: 00 p.m. Town Center Exhibit Area Spring N. H. Herd C. D. K. Simkus D. N. Hilts R. W. Skelhorne A. W. et al. POSTER LOCATION #202 Testing the Retention of Soluble Organic Species in a Cometary Nucleus Simulant: Preparing for Comet Sample Return [#2950] Our goal is to determine the optimal T range for large-scale curation and handling of cometary material, using an IDP analogue and a sub-zero T glove box. Movshovitz N. Asphaug E. Chesley S. R. Farnocchia D. Scheeres D. J. POSTER LOCATION #203 Forming 67P/C-G and Other Jupiter-Family Contact Binaries by Tidal Disruption? [#1502] We investigate the feasibility of forming the peculiar shape of Comet 67/P Churyumov-Gerasimenko by way of tidal splitting in half of a progenitor comet. Heather D. Barthelemy M. Besse S. Fraga D. Grotheer E. et al. POSTER LOCATION #204 The Rosetta Science Archive: Status and Plans for Completing and Enhancing the Archive Content [#2087] This presentation will outline the current status of the Rosetta archive, and the ‘enhanced archiving’ activities planned with instrument teams on Rosetta. Tang Y. Birch S. P. D. Hayes A. G. de Freitas Bart R. Squyres S. W. POSTER LOCATION #205 Boulder Size Frequency Distribution on Comet 67P/Churyumov-Gerasimenko [#2796] Using data from Rosetta and Philae spacecrafts, we analyzed the boulder size distribution and surface morphologies of the comet 67P/Churyumov-Gerasimenko. Carey E. M. Peters G. H. Choukroun M. Chu L. Carpenter E. et al. POSTER LOCATION #206 Comparison of the Mechanical Porous Ambient Comet Simulants (MPACS) to Other Comet Surface Analog Materials [#2754] MPACS is a suite of homogeneous, geological materials that are currently being used to test and validate the Biblade Comet Sampling System. Ligier N. Langevin Y. Hilchenbach M. Merouane S. COSIMA Team POSTER LOCATION #207 Physical Properties of Dust Particles Collected by the COSIMA Instrument on Board ROSETTA [#2166] Presentation of different physical properties (size distribution, typology) of cometary grains collected by the COSIMA instrument onboard the Rosetta spacecraft. Clark C. S. Clark P. E. POSTER LOCATION #208 Constant-Scale Natural Boundary Mapping to Depict Material Transport on Comet 67P/Churyumov-Gerasimenko [#2367] Constant-scale natural boundary mapping transforms the surface of any globular object to a two-dimensional plane in a way that preserves proportion and adjacency of natural districts composing the object’s surface. Springmann A. Harris W. M. Howell E. S. Lovell A. J. Kikwaya Eluo J. B. et al. POSTER LOCATION #209 Narrowband Optical Observations of the Near-Nucleus Region of Jupiter-Family Comets Comet 45P/Honda-Mrkos-Pajdušáková (HMP) [#2574] Comets pass by Earth / Showing coma volatiles / And activity. Sekhar A. Asher D. J. Werner S. C. Vaubaillon J. Li G. POSTER LOCATION #210 Change in General Relativistic Precession Rates Due to Lidov-Kozai Oscillations in the Solar System [#1876] We look at scenarios where sungrazing/suncolliding phases, induced by Kozai mechanism, can lead to rapid changes in GR precession rates in solar system bodies. Lunar and Planetary Science XLVIII (2017) sess313.pdf Yokley Z. W. Peplowski P. N. Goldsten J. O. POSTER LOCATION #211 Recalibration of the NEAR Gamma-Ray Spectrometer: Enabling New Science from the Landed and OrbitaL NEAR GRS Datasets [#1560] We will present a recalibration of the NEAR gamma-ray spectrometer for use in analyzing both the orbital and landed datasets. Peplowski P. N. POSTER LOCATION #212 The Global Elemental Composition of 433 Eros: First Results from the NEAR Gamma-Ray Spectrometer [#1598] Global Fe, K, and Th concentrations for Eros’ surface are derived from the NEAR GRS orbital dataset and compared to meteorite compositions. Keller L. P. Berger E. L. POSTER LOCATION #213 Plagioclase-Rich Itokawa Grains: Space Weathering, Exposure Ages, and Comparison to Lunar Soil Grains [#2353] More space weathering / An Itokawa haiku / Young plagioclase.. Ramaseri Chandra S. N. Fevig R. POSTER LOCATION #214 Comparison of Gravity Fields Derived Using Ground Radar and Spacecraft Observations for Close Proximity Operations Around Asteroid 25143 Itokawa [#2316] Comparison of gravity fields derived using ground radar and spacecraft observations for close proximity operations around asteroid 25143 Itokawa. Sears D. W. G. POSTER LOCATION #215 Itokawa is a Regolith Breccia, Not a Rubble Pile [#2463] Small size/density, no rubble piles, and regolith thickness among the explored asteroids work on spin and coherence and show that Itokawa is a regolith breccia. Zega T. J. Thompson M. S. Howe J. Y. POSTER LOCATION #216 Microstructure Analysis of a Soil Grain Returned from Asteroid Itokawa [#3037] We present results from a microstructural analysis of a soil grain returned from asteroid Itokawa. Kanamaru M. Sasaki S. POSTER LOCATION #217 Investigating the Effects of the Rotation and Interior Density Distribution on the Surface Gravity Field of Asteroid Itokawa [#2881] We conducted interior density estimation for asteroid 25143 Itokawa in terms of potential variance. This study implied that Itokawa had a monolithic head part. Wünnemann K. Engelmann J. Luther R. Hamann C. POSTER LOCATION #218 Impact-Induced Shock Melting and Ejection of Material in an Asteroidal Environment – Implications for the Deficit in Melt Agglutinates in Itokawa Samples [#2023] Quantitative analysis of impact-induced melting, ejection, and escape from asteroids by numerical modeling to explain melt particles deficit in Itokawa samples. Matsumoto T. Hasegawa S. Yurimoto H. POSTER LOCATION #219 Submicron Crater Populations on Regolith Particles of Asteroid Itokawa [#1093] Extensive investigations of submicron craters on Itokawa particles confirmed that secondary ejecta impacts were dominant processes for the submicron cratering. Sarid G. Larson J. POSTER LOCATION #220 The Day After: Post-Collision Distribution of Remnants, Fragments, and Debris Clouds in the Outer Solar System [#2785] What wonders await post-collisionally? / Moons, disks, clouds of debris / Follow the path, set gravitationally. .
Recommended publications
  • (101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
    ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo.
    [Show full text]
  • Impact Process of Boulders on the Surface of Asteroid 25143 Itokawa— Fragments from Collisional Disruption
    Earth Planets Space, 60, 7–12, 2008 Impact process of boulders on the surface of asteroid 25143 Itokawa— fragments from collisional disruption A. M. Nakamura1, T. Michikami2, N. Hirata3, A. Fujiwara4, R. Nakamura5, M. Ishiguro6, H. Miyamoto7,8, H. Demura3, K. Hiraoka1, T. Honda1, C. Honda4, J. Saito9, T. Hashimoto4, and T. Kubota4 1Graduate School of Science, Kobe University, Kobe, 657-8501, Japan 2Fukushima National College of Technology, Iwaki, Fukushima 970-8034, Japan 3School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan 4Institute of Space and Astronautical Sciences (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 229-8510, Japan 5National Institute of Advanced Industrial Science and Technology, Tsukuba 306-8568, Japan 6Astronomy Department, Seoul National University, Seoul 151-747, Korea 7The University Museum, University of Tokyo, Tokyo 113-0033, Japan 8Planetary Science Institute, Tucson, AZ 85719, USA 9School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan (Received November 3, 2006; Revised March 29, 2007; Accepted April 11, 2007; Online published February 12, 2008) The subkilometer-size asteroid 25143 Itokawa is considered to have a gravitationally bounded rubble-pile structure. Boulders appearing in high-resolution images retrieved by the Hayabusa mission revealed the genuine outcome of the collisional event involving the asteroid’s parent body. Here we report that the boulders’ shapes and structures are strikingly similar to laboratory rock impact fragments despite differences of orders of magnitude in scale and complexities of the physical processes. These similarities suggest the universal character of the process throughout the range of these scales, and the brittle and structurally continuous nature regarding the parent body of the boulders.
    [Show full text]
  • Topography of Large Craters and Equatorial Bulge of 162173 Ryugu
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1723-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Topography of large craters and equatorial bulge of 162173 Ryugu Noriyuki Namiki (1,2), Takahide Mizuno (2,3), Hiroki Senshu (4), Hirotomo Noda (1,2), Koji Matsumoto (1,2), Naru Hirata (5), Ryuhei Yamada (5), Yoshiaki Ishihara (6), Hitoshi Ikeda (3), Hiroshi Araki (1,2), Keiko Yamamoto (1), Sinsuke Abe (7), Yousuke Masuda (7), Fumi Yoshida (4), Sho Sasaki (8), Shoko Oshigami (1), Makoto Shizugami (1), Arika Higuchi (1), Seiitsu Tsuruta (1), Kazuyoshi Asari (1), Toshimichi Otsubo (9), Naoyuki Hirata (10), Fuyuto Terui (3), Teiji Kase (11), Katsunori Mayuzumi (11), Sei-ichiro Watanabe (12), Takanao Saiki (3), Satoru Nakazawa (3), Makoto Yoshikawa (3), and Yuichi Tsuda (3) (1) National Astronomical Observatory of Japan, Japan, (2) SOKENDAI (The Graduate University for Advanced Studies), Japan, (3) Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Japan, (4) Chiba Institute of Technology, Japan, (5) The University of Aizu, Japan, (6) National Institute of Advanced Industrial Science and Technology, Japan, (7) Nihon University, Japan, (8) Osaka University, Japan, (9) Hitotsubashi University, Japan, (10) Kobe University, Japan, (11) NEC Corporation, Japan, (12) Nagoya University, Japan ([email protected]) Abstract Lutetia, and Bennu which was recently visited by OSIRIS-REx spacecraft. Hayabusa2 Laser Altimeter (LIDAR) conducted two- dimensional scanning observation of the equatorial Ryugu is the second asteroid whose topography is band of asteroid, 162173 Ryugu on Oct. 30, 2018 to measured accurately by laser altimeter (LIDAR) [5] obtain detailed topography data.
    [Show full text]
  • An Investigation of the Low-Deltav Near-Earth Asteroids (341843) 2008
    Astronomy & Astrophysics manuscript no. 29093_astroph c ESO 2016 October 5, 2016 An investigation of the low-∆V near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA ? Two suitable targets for the ARM and MarcoPolo-M5 space missions D. Perna1, M. Popescu1; 2, F. Monteiro3, C. Lantz1, D. Lazzaro3, and F. Merlin1 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania 3 Observatório Nacional, R. Gal. José Cristino 77, 20921-400, Rio de Janeiro, Brazil Received 10 June 2016; accepted 14 September 2016 ABSTRACT Context. The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020’s for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. As D-types are very rare within the NEA population, considerable effort is still in progress to characterize easily accessible targets with unknown surface composition, in order to discover further asteroids that belong to this taxonomic group. Aims. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-∆V NEAs (341843) 2008 EV5 and (52381) 1993 HA.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Organic Matter and Water from Asteroid Itokawa Q
    www.nature.com/scientificreports OPEN Organic matter and water from asteroid Itokawa Q. H. S. Chan1,2*, A. Stephant2, I. A. Franchi2, X. Zhao2, R. Brunetto3, Y. Kebukawa4, T. Noguchi5, D. Johnson2,6, M. C. Price7, K. H. Harriss7, M. E. Zolensky8 & M. M. Grady2,9 Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the frst mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and ofers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modifed by D-enriched exogenous organics and water derived from a carbonaceous parent body. Understanding the earliest chemical reactions involving liquid water provides crucial insights to how simple building blocks of organic compounds evolved into increasingly complex macromolecules via actions of water.
    [Show full text]
  • University of Groningen Asteroid Thermophysical Modeling Delbo
    University of Groningen Asteroid thermophysical modeling Delbo, Marco; Mueller, Michael; Emery, Joshua P.; Rozitis, Ben; Capria, Maria Teresa Published in: Asteroids IV IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Delbo, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. (2015). Asteroid thermophysical modeling. In P. Michel, F. E. DeMeo, & W. F. Botke (Eds.), Asteroids IV (pp. 107-128). tUSCON: University of Arizona Press. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 13-11-2019 Asteroid thermophysical modeling Marco Delbo Laboratoire Lagrange, UNS-CNRS, Observatoire de la Coteˆ d’Azur Michael Mueller SRON Netherlands Institute for Space Research Joshua P. Emery Dept. of Earth and Planetary Sciences - University of Tennessee Ben Rozitis Dept.
    [Show full text]
  • Detectability of YORP Rotational Slowing of Asteroid 25143 Itokawa
    A&A 414, L21–L24 (2004) Astronomy DOI: 10.1051/0004-6361:20031739 & c ESO 2004 Astrophysics Detectability of YORP rotational slowing of asteroid 25143 Itokawa D. Vokrouhlick´y1 ,D.Capekˇ 1, M. Kaasalainen2, and S. J. Ostro3 1 Institute of Astronomy, Charles University, V Holeˇsoviˇck´ach 2, 180 00 Prague 8, Czech Republic e-mail: [email protected], [email protected] Letter to the Editor 2 Rolf Nevanlinna Institute, University of Helsinki, PO Box 4, 00014 Helsinki, Finland, and Sodankyla Geophysical Observatory, University of Oulu, Tahtelantie 62, 99600 Sodankyla, Finland e-mail: [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA e-mail: [email protected] Received 14 November 2003 / Accepted 11 December 2003 Abstract. We predict that the YORP thermal-emission effect can be directly detected through a measurable increase in the rotation period of the several-hundred-meter near-Earth asteroid 25143 Itokawa. The fractional change of Itokawa’s rotation 4 5 rate in between 2001 and 2004 should be (1 2) 10− , significantly larger than its currently estimated uncertainty 5 10− . The corresponding change of sidereal rotation− phase,× normalized to unity in a cycle, is (0:09 0:25) in January 2004,' producing× ' − (1 3) h delay of lightcurve maximum. ' − Key words. solar system: minor planets, asteroids – radiations mechanisms: thermal 1. Introduction 2. YORP effect Solar energy absorbed by an asteroid and re-radiated at thermal Torques produced by the reflection and thermal re-emission wavelengths causes an infinitesimal pressure on each surface of sunlight from an asteroid’s surface can alter its spin state.
    [Show full text]
  • Asteroid Surface Geophysics
    Asteroid Surface Geophysics Naomi Murdoch Institut Superieur´ de l’Aeronautique´ et de l’Espace (ISAE-SUPAERO) Paul Sanchez´ University of Colorado Boulder Stephen R. Schwartz University of Nice-Sophia Antipolis, Observatoire de la Coteˆ d’Azur Hideaki Miyamoto University of Tokyo The regolith-covered surfaces of asteroids preserve records of geophysical processes that have oc- curred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions. 1. INTRODUCTION wide range of geological features have been observed on the surfaces of asteroids and other small bodies such as the nu- Before the first spacecraft encounters with asteroids, cleus of comet 103P/Hartley 2 (Thomas et al.
    [Show full text]
  • RADAR OBSERVATIONS of NEAR-EARTH ASTEROIDS Lance Benner Jet Propulsion Laboratory California Institute of Technology
    RADAR OBSERVATIONS OF NEAR-EARTH ASTEROIDS Lance Benner Jet Propulsion Laboratory California Institute of Technology Goldstone/Arecibo Bistatic Radar Images of Asteroid 2014 HQ124 Copyright 2015 California Institute of Technology. Government sponsorship acknowledged. What Can Radar Do? Study physical properties: Image objects with 4-meter resolution (more detailed than the Hubble Space Telescope), 3-D shapes, sizes, surface features, spin states, regolith, constrain composition, and gravitational environments Identify binary and triple objects: orbital parameters, masses and bulk densities, and orbital dynamics Improve orbits: Very precise and accurate. Measure distances to tens of meters and velocities to cm/s. Shrink position uncertainties drastically. Predict motion for centuries. Prevent objects from being lost. à Radar Imaging is analogous to a spacecraft flyby Radar Telescopes Arecibo Goldstone Puerto Rico California Diameter = 305 m Diameter = 70 m S-band X-band Small-Body Radar Detections Near-Earth Asteroids (NEAs): 540 Main-Belt Asteroids: 138 Comets: 018 Current totals are updated regularly at: http://echo.jpl.nasa.gov/asteroids/index.html Near-Earth Asteroid Radar Detection History Big increase started in late 2011 NEA Radar Detections Year Arecibo Goldstone Number 1999 07 07 10 2000 16 07 18 2001 24 08 25 2002 22 09 27 2003 25 10 29 2004 21 04 23 2005 29 10 33 2006 13 07 16 2007 10 06 15 2008 25 13 26 2009 16 14 19 2010 15 07 22 2011 21 06 22 2012 67 26 77 2013 66 32 78 2014 81 31 96 2015 29 12 36 Number of NEAs known: 12642 (as of June 3) Observed by radar: 4.3% H N Radar Fraction 9.5 1 1 1.000 10.5 0 0 0.000 11.5 1 1 1.000 12.5 4 0 0.000 Fraction of all potential NEA 13.5 10 3 0.300 targets being observed: ~1/3 14.5 39 11 0.282 15.5 117 22 0.188 See the talk by Naidu et al.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • Disk-Resolved Optical Spectra of Near-Earth Asteroid 25143 Itokawa with Hayabusa/AMICA Observations
    발표논문 초록 (태양계) [구SS-01] Disk-Resolved Optical Spectra of Near-Earth Asteroid 25143 Itokawa with Hayabusa/AMICA observations Masateru Ishiguro Seoul National University The Hayabusa mission successfully rendezvoused with its target asteroid 25143 Itokawa in 2005 and brought the asteroidal sample to the Earth in 2009. This mission enabled to connect the S-type asteroids to ordinary chondrites, the counterpart meteorites which exist in near Earth orbit. Recent finding of a fragment from 25143 Itokawa [1] suggested that the asteroid experienced an impact after the injection to the near-Earth orbit. In this presentation, we investigated the evidence of the recent impact on 25143 Itokawa using the onboard camera, AMICA. AMICA took more than 1400 images of Itokawa during the rendezvous phase. It is reported that AMICA images are highly contaminated by lights scattered inside the optics in the longer wavelength. We developed a technique to subtract the scattered light by determining the point spread functions for all available channels. As the result, we first succeeded in the determination of the surface spectra in all available bands. We consider a most fresh-looking compact crater, Kamoi, is a possible impact site. [1] Ohtsuka, K., Publications of the Astronomical Society of Japan, 63, 6, L73-L77 [구SS-02] Dynamical Evolution of the Dark Asteroids with Tisserand parameter 김윤영1, Masateru Ishiguro2, 정진훈2, 양홍규2, Fumihiko Usui3 1 이화여자대학교 물리학과, 2서울대학교 물리천문학부, 3우주과학연구소 (일본) It has been speculated that there could be dormant or extinct comets in the list of known asteroids, which appear asteroidal but are icy bodies originating from outer solar system.
    [Show full text]