Diamonds in the Rubble

Total Page:16

File Type:pdf, Size:1020Kb

Diamonds in the Rubble NEWS FEATURE Diamonds in the rubble NEWS FEATURE Two ancient asteroids with distinctive diamond-like shapes are revealing clues not only about their own formation, but that of the solar system as well. Nola Taylor Redd, Science Writer For the past three years, two spacecraft have been studying a pair of the most primitive solar system objects ever explored. The asteroids, Ryugu and Bennu, born of violent collisions in the asteroid belt, are some of the smallest objects ever visited by spacecraft. Ryugu is just over a kilometer across, and Bennu is about half as wide. But these small bodies are promising a huge bounty of data to astronomers over the next few years. Although the findings could revolutionize our under- standing of the history, formation, and composition of asteroids, they may also tell us a little about the solar system during its infancy. That’s because these carbon-rich (1) asteroids, with their coal-dark surfaces, are also among the darkest bodies known in the solar system. Although that can make it difficult to observe them from Earth, studying The asteroid Bennu ejects particles from its surface in January 2019—a them could tell us about the building blocks of life that phenomenon captured in an image composed from multiple photos. Image credit: NASA/Goddard/University of Arizona/Lockheed Martin. such asteroids may have delivered to Earth early in the history of the solar system. separated launch times, the spacecraft arrived at their Long Strange Trips respective targets only six months apart: Hayabusa2 in Before researchers could hope to study these aster- June 2018 and OSIRIS-REx in December. Almost im- oids, they first had to reach them. This, by itself, was an mediately, the spacecraft began to reveal secrets about enormous challenge. Only a handful of spacecraft their respective asteroids. have visited asteroids, and fewer still have managed to Both missions got up close and personal with their orbit one of these tiny, irregularly shaped objects. hosts. Not long after its arrival, OSIRIS-REx became the The Hayabusa spacecraft, launched by the Japa- world record holder for closest orbit, a record it went nese Aerospace Exploration Agency (JAXA) in 2003, on to break as it traveled even closer to Bennu. became the first to collect a sample of an asteroid. But Hayabusa2 dropped several small rovers which bounced the mission was beset by engine problems. Hayabusa’s across the surface of Ryugu, capturing photos and the prospects for returning with a sample remained un- public’s imagination. The Japanese craft went on to certain for much of its journey. “shoot” Ryugu with a special bullet that blew fine dusty On December 3, 2014, JAXA launched the material into the air that the spacecraft could capture, Hayabusa2 mission to Ryugu. A newly designed en- allowing it to probe beneath the asteroid’s surface. gine that relies on ionized xenon gas for propulsion “Before OSIRIS-REx and Bennu, we [had] never effortlessly sent the spacecraft on a 3.5-year, 280- visited such primordial asteroids,” says Yuchira Cho, million-kilometer journey—a striking contrast to the Haybusa2 team member. problems that plagued its predecessor. Hayabusa2 is already on its way back to Earth with About two years after the launch of Hayabusa2, a sample of Ryugu, whereas OSIRIS-REx has selected NASA sent its Origins, Spectral Interpretation, Resource the site from which to carve out a bit of the asteroid to Identification, Security-Regolith Explorer (OSIRIS-REx) carry back home. The clues they deliver could be hurtling from Earth to Bennu. Despite their widely revealing. Published under the PNAS license. www.pnas.org/cgi/doi/10.1073/pnas.2005076117 PNAS Latest Articles | 1of4 Downloaded by guest on September 25, 2021 Despite this potential window into the past, re- searchers know little about asteroids. The first one wasn’t discovered until 1801. It wasn’t until 1959 that researchers realized that many meteorites came from asteroids. More than 22,000 meteorites have been identified on Earth, including some originating from Mars and the Moon. But researchers only began classifying asteroids by type in the 1970s and 80s, and definitively identifying a specific parent body has been a challenge. Then, in 1991, a spacecraft made the first flyby of an asteroid; since then, missions have buzzed more than a dozen of them. And so far, only the first Hayabusa mission has ever grabbed a piece of an asteroid (25143 Itokawa in 2005) and brought it back to Earth. Like Ryugu and Bennu, Itokawa is a so-called rub- ble pile asteroid (2), the remains of a larger object that shattered in a collision. But whereas Ryugu and Bennu arerichincarbon,Itokawaisastonyasteroid,the source of the most common types of meteorites. The For scale, the rock casting a shadow on the bumpy boulder (Top Center) is 4 feet potato-shaped Itokawa has few craters or boulders (1.1 meter) long. The image is from the mission’s Orbital B phase in August on its surface. This finding led many to suspect that of 2019. Image credit: NASA/Goddard/University of Arizona. Hayabusa2 and OSIRIS-REx would encounter similar surfaces and have little trouble selecting samples from Solar System Historians their targets. That turned out not to be the case. Both About 4.5 billion years ago, a giant disk of rocks, gas, Ryugu (3) and Bennu (4) were covered with boulders and dust coalesced to form Earth and other planets. that make collecting samples a challenge. And their boulder-strewn surfaces weren’t the only surprises. Asteroids are some of the leftover pieces from this process and can provide insights into how our solar Diamond Delights system came to be. Most asteroids are found in the Radar and Hubble Space Telescope observations of asteroid belt between Mars and Jupiter, a vast field Bennu had revealed its distinctive diamond shape well that looks nothing like Hollywood’s portrayal of it. The before OSIRIS-REx arrived. But Ryugu is farther away asteroids are usually widely separated, and collisions and its shape had remained indistinct. Studies from are few and far between. Asteroids have changed far Earth suggested a roughly spherical object, or one less than most other solar system bodies like Earth and with a dumpling-like appearance. Only when Hayabusa2 the Moon, making these small rocky bodies a valuable drew close to the asteroid did it become clear that Ryugu too is diamond shaped (5). “Until we got there, window into the early solar system. to the proximity of the asteroid, I don’t think we could really finally answer,” says Seiji Sugita, a professor at the University of Tokyo, Japan, and member of the Haybausa2 team. Both Ryugu and Bennu are small parts of larger asteroids, born when a massive object smashed into their parent bodies and blew off a cloud of debris. Rubble piles like Ryugu and Bennu (6) are made up of a variety of loosely bound rocks from both the surface and interior of the larger source asteroid. “We’re getting a glimpse at the previous body that was ca- tastrophically disrupted and then reaccumulated into this grab bag of rocks from that parent body,” says Erica Jawin, a researcher at the Smithsonian Museum of Natural History, in Washington, DC, and part of the OSIRIS-REx team. Gravity pulled debris together, and like an ice skater pulling his arms in, the asteroid be- gan to spin faster and faster, and the rocks preferen- tially accumulated near the equator of the asteroid, The intended touchdown (Arrow) of Hayabusa2 was near creating a bulge that gives the asteroids their di- ’ Ryugu s northern hemisphere, photographed here with amond top shape. an optical navigation camera in January of 2019. Image credit: JAXA, University of Tokyo, Kochi University, The ridges running around the equators of both Rikkyo University, Nagoya University, Chiba Institute of asteroids revealed a further surprise. Ryugu’s ridge is Technology, Meiji University, University of Aizu, AIST. prominent, whereas Bennu’s is muted. Several large 2of4 | www.pnas.org/cgi/doi/10.1073/pnas.2005076117 Redd Downloaded by guest on September 25, 2021 impact craters scar the ridges on both asteroids, fea- tures which Kevin Walsh, a planetary modeler at the Southwest Research Institute in Boulder, CO, and an OSIRIS-REx team leader, calls “shocking”: The craters are evidence that the equators on these asteroids are older than expected. The finding casts doubt on our understanding of how and when these asteroids formed. Planetary re- searchers thought that the asteroids probably didn’t achieve their diamond shape until after they had mi- grated, about a billion years after their birth, to the quieter, less violent neighborhood nearer to Earth. If so, impact craters on the equatorial ridges should be small and less plentiful than if the craters had formed back in the asteroid belt. The thinking now is that the impacts that created the massive craters most likely came early in the life of Upper Left Ryugu and Bennu, when they were still in the asteroid The small asteroid lander, MASCOT ( ), separates from the Hayabusa2 spacecraft in October belt, but after the ridges were formed. “These aster- 2019 and heads to the surface of Ryugu to collect data. oids might have gotten their shape when they were Image credit: JAXA, University of Tokyo, Kochi born, or at least a very long time ago,” he says. That’s University, Rikkyo University, Nagoya University, Chiba something researchers didn’t expect. Institute of Technology, Meiji University, University of Aizu, AIST. A Field of Boulders Both Ryugu and Bennu had another surprise in store collisions or impacts.
Recommended publications
  • Hayabusa2 and the Formation of the Solar System PPS02-25
    PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • (101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
    ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo.
    [Show full text]
  • An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1].
    [Show full text]
  • Impact Process of Boulders on the Surface of Asteroid 25143 Itokawa— Fragments from Collisional Disruption
    Earth Planets Space, 60, 7–12, 2008 Impact process of boulders on the surface of asteroid 25143 Itokawa— fragments from collisional disruption A. M. Nakamura1, T. Michikami2, N. Hirata3, A. Fujiwara4, R. Nakamura5, M. Ishiguro6, H. Miyamoto7,8, H. Demura3, K. Hiraoka1, T. Honda1, C. Honda4, J. Saito9, T. Hashimoto4, and T. Kubota4 1Graduate School of Science, Kobe University, Kobe, 657-8501, Japan 2Fukushima National College of Technology, Iwaki, Fukushima 970-8034, Japan 3School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan 4Institute of Space and Astronautical Sciences (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 229-8510, Japan 5National Institute of Advanced Industrial Science and Technology, Tsukuba 306-8568, Japan 6Astronomy Department, Seoul National University, Seoul 151-747, Korea 7The University Museum, University of Tokyo, Tokyo 113-0033, Japan 8Planetary Science Institute, Tucson, AZ 85719, USA 9School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan (Received November 3, 2006; Revised March 29, 2007; Accepted April 11, 2007; Online published February 12, 2008) The subkilometer-size asteroid 25143 Itokawa is considered to have a gravitationally bounded rubble-pile structure. Boulders appearing in high-resolution images retrieved by the Hayabusa mission revealed the genuine outcome of the collisional event involving the asteroid’s parent body. Here we report that the boulders’ shapes and structures are strikingly similar to laboratory rock impact fragments despite differences of orders of magnitude in scale and complexities of the physical processes. These similarities suggest the universal character of the process throughout the range of these scales, and the brittle and structurally continuous nature regarding the parent body of the boulders.
    [Show full text]
  • Topography of Large Craters and Equatorial Bulge of 162173 Ryugu
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1723-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Topography of large craters and equatorial bulge of 162173 Ryugu Noriyuki Namiki (1,2), Takahide Mizuno (2,3), Hiroki Senshu (4), Hirotomo Noda (1,2), Koji Matsumoto (1,2), Naru Hirata (5), Ryuhei Yamada (5), Yoshiaki Ishihara (6), Hitoshi Ikeda (3), Hiroshi Araki (1,2), Keiko Yamamoto (1), Sinsuke Abe (7), Yousuke Masuda (7), Fumi Yoshida (4), Sho Sasaki (8), Shoko Oshigami (1), Makoto Shizugami (1), Arika Higuchi (1), Seiitsu Tsuruta (1), Kazuyoshi Asari (1), Toshimichi Otsubo (9), Naoyuki Hirata (10), Fuyuto Terui (3), Teiji Kase (11), Katsunori Mayuzumi (11), Sei-ichiro Watanabe (12), Takanao Saiki (3), Satoru Nakazawa (3), Makoto Yoshikawa (3), and Yuichi Tsuda (3) (1) National Astronomical Observatory of Japan, Japan, (2) SOKENDAI (The Graduate University for Advanced Studies), Japan, (3) Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Japan, (4) Chiba Institute of Technology, Japan, (5) The University of Aizu, Japan, (6) National Institute of Advanced Industrial Science and Technology, Japan, (7) Nihon University, Japan, (8) Osaka University, Japan, (9) Hitotsubashi University, Japan, (10) Kobe University, Japan, (11) NEC Corporation, Japan, (12) Nagoya University, Japan ([email protected]) Abstract Lutetia, and Bennu which was recently visited by OSIRIS-REx spacecraft. Hayabusa2 Laser Altimeter (LIDAR) conducted two- dimensional scanning observation of the equatorial Ryugu is the second asteroid whose topography is band of asteroid, 162173 Ryugu on Oct. 30, 2018 to measured accurately by laser altimeter (LIDAR) [5] obtain detailed topography data.
    [Show full text]
  • An Investigation of the Low-Deltav Near-Earth Asteroids (341843) 2008
    Astronomy & Astrophysics manuscript no. 29093_astroph c ESO 2016 October 5, 2016 An investigation of the low-∆V near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA ? Two suitable targets for the ARM and MarcoPolo-M5 space missions D. Perna1, M. Popescu1; 2, F. Monteiro3, C. Lantz1, D. Lazzaro3, and F. Merlin1 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania 3 Observatório Nacional, R. Gal. José Cristino 77, 20921-400, Rio de Janeiro, Brazil Received 10 June 2016; accepted 14 September 2016 ABSTRACT Context. The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020’s for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. As D-types are very rare within the NEA population, considerable effort is still in progress to characterize easily accessible targets with unknown surface composition, in order to discover further asteroids that belong to this taxonomic group. Aims. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-∆V NEAs (341843) 2008 EV5 and (52381) 1993 HA.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Initial Analysis Team Introduction
    Summary and contents of the press conference Overview • Since the return of the sample in December of last year, curation activities have been conducted for the initial analysis of the sample. • Curation activities are aimed at cataloguing the sample without compromising the scientific value in order to provide information that contributes to further detailed scientific analysis. • Today’s report is that part of the catalogued sample is ready for delivery. Contents 1. Report from the curation team (T. Usui, E. Nakamura, M. Ito) 2. Report from the initial analysis teamS. TachibanaH. YurimotoT. Nakamura T. NoguchiR. OkazakiH. YabutaH. Naraoka 2021/6/17 Hayabusa2 reporter briefing 2 Report from the curation team Tomohiro USUIJAXA Eizo NAKAMURAOkayama University Motoo ITOJAMSTEC Ryugu sample curation work The initial description of the Ryugu sample was performed without removing the sample from the clean chamber, in order to avoid contamination from the global environment CC3-1 Opening the sample container under vacuum environment CC3-2 Sample collection under vacuum CC3-3 Transition from vacuum to nitrogen environment CC4-1 Handling of submillimeter-sized particles CC4-2 Handling / observation / sorting of relatively large particles (> mm) 2021/6/17 Hayabusa2 reporter briefing 4 Achievement of the world’s first sample collection and storage of asteroid samples under vacuum conditions Samples collected under vacuum on December 15, 2020 will not be distributed at this time, but continued to be stored under vacuum (CC3-2) for future
    [Show full text]
  • Organic Matter and Water from Asteroid Itokawa Q
    www.nature.com/scientificreports OPEN Organic matter and water from asteroid Itokawa Q. H. S. Chan1,2*, A. Stephant2, I. A. Franchi2, X. Zhao2, R. Brunetto3, Y. Kebukawa4, T. Noguchi5, D. Johnson2,6, M. C. Price7, K. H. Harriss7, M. E. Zolensky8 & M. M. Grady2,9 Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the frst mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and ofers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modifed by D-enriched exogenous organics and water derived from a carbonaceous parent body. Understanding the earliest chemical reactions involving liquid water provides crucial insights to how simple building blocks of organic compounds evolved into increasingly complex macromolecules via actions of water.
    [Show full text]
  • Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
    Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC.
    [Show full text]
  • Shape Reconstruction of the Asteroid Ryugu in Hayabusa2 Mission
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2093.pdf SHAPE RECONSTRUCTION OF THE ASTEROID RYUGU IN HAYABUSA2 MISSION. Naru Hirata1, Naoyuki Hirata2, S. Tanaka2, N. Nishikawa2, T. Sugiyama1, R. Noguchi3, Y. Shimaki3, R. Gaskell4, E. Palmer4, K. Matsumoto5, H. Senshu6, Y. Yamamoto3, S. Murakami3, Y. Ishihara3, 7, S. Sugita8, T. Morota8, R. Honda9, M. Arakawa2, K. Ogawa2, Y. Tsuda3, S. Watanabe10, 1ARC-Space, the University of Aizu (Aizu-Wakamatsu, Fukushima, 965-8580, Japan, [email protected]), 2Kobe University, 3ISAS/JAXA, 4Planetary Science Institute, 5NAOJ, 6Chiba Institute of Technology, 7NIES, 8University of Tokyo, 9Kochi University, 10Nagoya University. Introduction: The Hayabusa2 spacecraft arrived during initial observation campaigns from 07/2018 to at the asteroid Ryugu in 06/2018 and started its 08/2018. These campaigns include the Box-A (20 km proximity observation to select candidates of landing altitude), Box-B (6.5 km altitude), and Mid-Altitude sites for touchdown operations. The shape of the (5.1 km altitude) observations. Models were then asteroid is one of the most critical information not only revised with data from following various observations, for landing site selection but also for scientific including close-up imaging during decent operations, discussions. high- and low-phase angle observations, and high sub- We successfully reconstructed and updated the spacecraft latitude observations. Because of constraints shape models of Ryugu with images taken by the on the relative position of the spacecraft to the asteroid, optical navigation camera (ONC) onboard the the sub-spacecraft latitude is limited within ±30˚. This spacecraft and relating ancillary data acquired during limitation affects the performance of the shape model proximity observation of the asteroid [1].
    [Show full text]