Biogeography of Aquatic and Semiaquatic Heteroptera in the Grand Canyon Ecoregion, Southwestern USA

Total Page:16

File Type:pdf, Size:1020Kb

Biogeography of Aquatic and Semiaquatic Heteroptera in the Grand Canyon Ecoregion, Southwestern USA Monographs of the Western North American Naturalist Volume 4 Article 2 10-3-2008 Biogeography of aquatic and semiaquatic Heteroptera in the Grand Canyon Ecoregion, southwestern USA Lawrence E. Stevens Museum of Northern Arizona, [email protected] John T. Polhemus Colorado Entomological Institute, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/mwnan Recommended Citation Stevens, Lawrence E. and Polhemus, John T. (2008) "Biogeography of aquatic and semiaquatic Heteroptera in the Grand Canyon Ecoregion, southwestern USA," Monographs of the Western North American Naturalist: Vol. 4 , Article 2. Available at: https://scholarsarchive.byu.edu/mwnan/vol4/iss1/2 This Monograph is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Monographs of the Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Monographs of the Western North American Naturalist 4, © 2008, pp. 38–76 BIOGEOGRAPHY OF AQUATIC AND SEMIAQUATIC HETEROPTERA IN THE GRAND CANYON ECOREGION, SOUTHWESTERN USA Lawrence E. Stevens1 and John T. Polhemus2 ABSTRACT.—We examined the biogeography of aquatic and semiaquatic Heteroptera (ASH) in the Grand Canyon (GC) ecoregion (GCE) on and adjacent to the southern Colorado Plateau. We report 89 ASH taxa in 86 species, 37 gen- era, and 14 families in the GCE, including 54 ASH taxa detected within or on the rims of GC and its major tributaries, a fauna 3.8-fold greater than previously reported. We tested 2 groups of biogeographic hypotheses to account for this high level of diversity, demonstrating an underlying pattern of mixed biogeographic affinity and strong landform-climate effects. Equal numbers of ASH taxa were derived from allochthonous (neotropical and nearctic) sources and autochtho- nous (range-centered) sources. A negative linear relationship existed between area-adjusted ASH taxon density and ele- vation, with more Mexican/neotropical taxa at low elevations and more nearctic taxa at higher elevations. While species richness was positively scale dependent, biogeographic landform impacts were unrelated or negatively related to spatial scale. The uplifted southern margin of the Colorado Plateau along the Mogollon Rim supported elevated ASH diversity as a function of ecotone effects and interprovincial basin connectivity. Barrier/filter effects were stronger than null, or refuge effects, and little endemism was detected in the GCE. Colonization history varied across elevation and in relation to landscape evolution. No reported GCE taxa have been extirpated, but 52.8% of the fauna occurred at 3 or fewer local- ities (primarily springs), sites that may be threatened by habitat alteration and climate change. Key words: aquatic Heteroptera, biogeographic affinity, Colorado Plateau, diversity, ecoregion, Grand Canyon, land- form-climate impacts. Ecoregional diversity is the result of evolu- to which elevational zonation of the assemblage tionarily distal taxon origin and more proximal recapitulates origin, the evolution of endemism landform-climate interactions, processes that (review in Lomolino et al. 2006, Wilmé et al. are mediated by life history and adaptation 2006), and the resilience of diversity to climate (Nekola 1999, Willig et al. 2003, Jablonski et change. Such biogeographic studies require al. 2006). New World aquatic and semiaquatic thorough knowledge of landform history and Heteroptera (ASH) are appropriate taxa in fauna in topographically complex terrains, such which to study these factors because (1) the as large, deep canyons with adjacent mountains. taxa have a lengthy evolutionary history (Gri - Here, we present comprehensive documenta- maldi and Engel 2005), (2) contemporary tion of ASH diversity and compare origin and neotropical ASH diversity (1289 species) is far landform influences on the fauna in and around greater than that in the nearctic region (424 the Grand Canyon (GC), the world’s most species; Polhemus and Polhemus 2008), and renowned large, deep canyon system. (3) the large fauna includes numerous rare and The temporal and geomorphic development endemic taxa (Schuh and Slater 1995). Regional of the Grand Canyon ecoregion (GCE) in Cen- biogeographic studies provide insight into tec- ozoic time has received considerable attention. tonic history, drainage basin development, vi - Major vicariance and associated climate change cariance, and conservation (Hansen 1985, Pol- events have occurred in the GCE since late hemus 1993, Polhemus and Polhemus 1998, Paleozoic time: (1) the formation of the Creta- 2002, Gotelli and Ellison 2002, Beck et al. ceous (146–65.5 million years ago [mya]) sea- 2006, Wilmé et al. 2006). However, the roles way; (2) the Sevier and Laramide orogenies and interactions of origin and landform and (ca. 120 and 80–40 mya, respectively); (3) the how these roles and interactions affect diver- Basin and Range orogeny (<22 mya to the sity remain obscure, limiting our understanding present); (4) the relatively recent integration of of the sources of diversity and rarity, the extent the Colorado River drainage (Hamblin 1994, 1Museum of Northern Arizona, 3101 N. Ft. Valley Road, Flagstaff, AZ 86001. E-mail: [email protected] 2Colorado Entomological Institute, 3115 South York St., Englewood, CO 80113. E-mail: [email protected]. 38 2008] GRAND CANYON AQUATIC HETEROPTERA 39 A E Muav Gorge J Fig. 1. Map of the Grand Canyon ecoregion. Major tributaries and sites: 1 = Cataract/Havasu Creek, 2 = Diamond Creek, 3 = Kanab Creek, 4 = Lees Ferry, 5 = Little Colorado River, 6 = Paria River, 7 = Phantom Ranch. Cities and sites in inset: A = Flagstaff, B = Holbrook, C = Lukachukai, D = San Francisco Peaks, E = Springerville, F = Tuba City, G = Verde River / Camp Verde, H = Winslow, I = Virgin River, J = Mogollon Rim. Young 2001); and (5) late Tertiary and Quater- and some invertebrate taxa, and stronger nary climate changes, which resulted in a refugial effects among some low-vagility taxa 1000-m upslope redistribution of major vege- (Garth 1950, Stevens and Huber 2004). tation zones in the past 13,000 years (Allen ASH diversity and distribution in the GCE and Anderson 1993). These events have played were previously known from specimens col- important roles in the distribution of many lected at 12 sites during an expedition through southwestern taxa across elevation (Martin the Colorado River corridor in 1972 (Polhe- and Klein 1984, Phillips et al. 1987, Colgan et mus and Polhemus 1976). Their study docu- al. 2006). Grand Canyon itself generally is mented the presence of 14 taxa at low eleva- regarded as a geologically young landscape tions in GC, and made several important ob - feature (<5.5 million years old; Young 2001). servations about the biogeographic role of GC. Stevens (1983) proposed that a large deep They reported a depauperate fauna with low canyon, such as GC, may exert 4 primary land- levels of endemism, primarily composed of scape biogeographic influences on regional range-centered taxa. They concluded that the biota: functioning as a barrier/filter, function- uplifted southern edge of the Colorado Plateau ing as a range or movement corridor, provid- along the Mogollon Rim (Fig. 1) has blocked ing a refugium (e.g., for endemic taxa in rare the northward dispersal of ASH taxa that are habitats), or having no effect (e.g., on highly common in central Arizona and suggested that vagile taxa). Stevens and Huber (2004) exam- ASH origin has a relatively minor impact on ined those influences among GCE tiger beetles contemporary ASH diversity (i.e., little mixing (Coleoptera: Cicindelidae) and reported strong of biogeographic regions has occurred). How- influences of the first 3 effects. However, origin ever, the Polhemuses did not collect ASH and landform responses varied among different from middle and higher elevations in GC in taxa, with stronger origin and corridor effects 1976, nor did they attempt to integrate ASH among GCE plants and butterflies, stronger data from the surrounding southern Colorado barrier effects among terrestrial vertebrates Plateau, data that are needed to clarify the 40 MONOGRAPHS OF THE WESTERN NORTH AMERICAN NATURALIST [Volume 4 effects of elevation on biogeographic affinity In addition, our data provide insight into the and range constraints on the assemblage. integration of the lower Colorado River In contrast to the GCE, Polhemus and Pol- drainage in the western GC. Lastly, we discuss hemus (2002) reported that the ASH fauna of ASH conservation in the context of ecoregional the southern Great Basin exhibited a high pro- biogeographic patterns. portion of endemism, with unique taxa found particularly in warm stenothermic limnocrene HYPOTHESES springs in southern Nevada. They concluded that the apparently depauperate, low-endemism Origin Effects condition of the Colorado Plateau ASH fauna Insight into the factors responsible for con- was the result of the Colorado River’s relatively temporary ASH diversity may be gained using recent drainage integration from the Rocky classic biogeographic analyses of taxon biogeo- Mountain geologic province into the older graphic affinities, ranges, and elevational dis- Basin and Range geologic province; however, tribution. Following the descriptions of indi- insufficient data precluded them from dis- vidual ASH taxa and diversity in the GCE, we cussing the transition
Recommended publications
  • Marino-Perez Et Al Layout 1
    Vestnik zoologii, 45(5): e-13—e-19, 2011 Ýêîëîãèÿ DOI 10.2478/v10058-011-0027-0 UDC 593.176 MORPHOMETRIC VARIATIONS OF DISCOPHRYA ELONGATA (CILIOPHORA, SUCTOREA) ATTACHED TO TWO DIFFERENT SPECIES OF AQUATIC TRUE BUGS (HEMIPTERA, PROSORRHYNCHA, NEPOMORPHA) R. Mariño-Pérez1, R. Mayén-Estrada1, R. Macip-Ríos2, I. V. Dovgal3 1 Laboratorio de Protozoología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México 2 Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México 3 Schmalhausen Institute of Zoology, B. Chmielnicky str., 15, Kyiv, 01601 Ukraine E-mail: [email protected] Received 27 January 2011 Accepted 30 March 2011 Morphometric Variations of Discophrya elongata (Ciliophora, Suctorea) Attached to Two Different Species of Aquatic True Bugs (Hemiptera, Prosorrhyncha, Nepomorpha). Mariño-Pérez R., Mayén-Estrada R., Macip-Ríos R., Dovgal I. V. – Morphometric variation in Discophrya elongata living as epibionts of two species of aquatic true bugs, Corisella edulis and Notonecta unifasciata, collected from the same pond in Mexico are discussed. Factors that may be responsible for observed variability, especially hydrodynam- ic loads and long-term modifications, also are identified and discussed. Key words: Discophrya elongata, suctorian, variability, host, hydrodynamic loads, long-term modifi- cations. Èçìåí÷èâîñòü Discophrya elongata (Ciliophora, Suctorea) ïðè ïîñåëåíèè íà äâóõ ðàçíûõ âèäàõ âîäíûõ êëîïîâ (Hemiptera, Prosorrhyncha, Nepomorpha). Ìàðèíî-Ïåðåñ Ð., Ìàéåí-Ýñòðàäà Ð., Ìàcèï-Ðèîñ Ð., Äîâãàëü È. Â. –  ñòàòüå îáñóæäàåòñÿ èçìåí÷èâîñòü ðàçìåðíûõ õàðàêòåðèñòèê ïîëèìîðôíîãî âèäà ñóêòîðèé Discophrya elongata ïðè ïîñåëåíèè íà äâóõ âèäàõ âîäíûõ êëîïîâ Corisella edulis è Notonecta unifasciata èç îäíîãî ìåñòîîáèòàíèÿ – ïðóäà â Ìåêñèêå.
    [Show full text]
  • Hemiptera: first Record for an Australian Lophopid (Hemiptera, Lophopidae)
    Australian Journal of Entomology (2007) 46, 129–132 Historical use of substrate-borne acoustic production within the Hemiptera: first record for an Australian Lophopid (Hemiptera, Lophopidae) Adeline Soulier-Perkins,1* Jérôme Sueur2 and Hannelore Hoch3 1Muséum National d’Histoire Naturelle, Département Systématique et Évolution, USM 601 MNHN & UMR 5202 CNRS, Case Postale 50, 45, Rue Buffon, F-75005 Paris, France. 2NAMC-CNRS UMR 8620, Bât. 446, Université Paris XI, F-91405 Orsay Cedex, France. 3Museum für Naturkunde, Institut für Systematische Zoologie, Humboldt-Universität zu Berlin Invalidenstr. 43, D- 10115 Berlin, Germany. Abstract Here the first record of communication through substrate-borne vibrations for the Lophopidae family is reported. The signals from Magia subocellata that the authors recorded were short calls with a decreasing frequency modulation. Acoustic vibrations have been observed for other families within the Hemiptera and a scenario concerning the historical use of vibrational communication within the Hemiptera is tested using a phylogenetic inference. The most parsimonious hypothesis suggests that substrate-borne communication is ancestral for the hemipteran order and highlights the groups for which future acoustic research should be undertaken. Key words Cicadomorpha, Coleorrhyncha, evolutionary scenario, Heteroptera, Sternorrhyncha, substrate vibration. INTRODUCTION Lophopidae migrating into America via the Bering land bridge. Some other ancestors of the extant groups moved onto Many animals have been recently recognised for their ability newly emerging land in the Pacific, expanding their distribu- to communicate through substrate-borne vibrations (Hill tion as far east as the Samoan Islands, and as far south as 2001). While elephants produce vibrations transmitted by the Australia (Soulier-Perkins 2000).
    [Show full text]
  • Underwater Breathing: the Mechanics of Plastron Respiration
    J. Fluid Mech. (2008), vol. 608, pp. 275–296. c 2008 Cambridge University Press 275 doi:10.1017/S0022112008002048 Printed in the United Kingdom Underwater breathing: the mechanics of plastron respiration M. R. FLYNN† AND J O H N W. M. B U S H Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA (Received 11 July 2007 and in revised form 10 April 2008) The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Main- tenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • Checklist and New Records of Notonectidae (Hemiptera: Heteroptera: Nepomorpha) from Goiás, Brazil
    doi:10.12741/ebrasilis.v10i1.667 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Taxonomy and Systematic / Taxonomia e Sistemática Checklist and new records of Notonectidae (Hemiptera: Heteroptera: Nepomorpha) from Goiás, Brazil Registered on ZooBank: urn:lsid:zoobank.org:pub:697439A6-40DA-48CF-A948-D85726FDF94E Julianna Freires Barbosa¹ & Karina Dias da Silva² 1. Universidade Federal do Rio de Janeiro, Instituto de Biologia, CCS, Depto. de Zoologia, Lab. Entomologia. 2.Universidade Federal do Pará. EntomoBrasilis 10 (1): 44-50 (2017) Abstract. The brazilian savannah, called Cerrado, has the richest flora among the world’s savannahs, and the State of Goiás comprises part of this biome. We present here a checklist for Goiás based on literature and specimens collected, with 18 species of Notonectidae, including new distribution records of Martarega membranacea White, 1879, and first records of Buenoa konta Nieser & Pelli, 1994; Buenoa pseudomutabilis Barbosa, Ribeiro & Nessimian, 2010; Buenoa tarsalis Truxal, 1953; Martarega bentoi Truxal, 1949 and Martarega brasiliensis Truxal, 1949 in the State. This checklist highlights a gap in the knowledge of Notonectidae and a great necessity of works with diversity of backswimmers in Goiás. Keywords: Buenoa; Central-West region; Cerrado; Martarega; Neotropical. Lista de espécies e registros novos de Notonectidae (Hemiptera: Heteroptera: Nepomorpha) do Estado de Goiás, Brasil
    [Show full text]
  • Taxonomic Overview of the Family Naucoridae (Heteroptera: Nepomorpha) in Mexico
    Dugesiana 26(1): ISSN 1405-4094 (edición impresa) Fecha de publicación: 2019 ISSN 2007-9133 (edición online) ©Universidad de Guadalajara Taxonomic overview of the family Naucoridae (Heteroptera: Nepomorpha) in Mexico Sinopsis de la familia Naucoridae (Heteroptera: Nepomorpha) en México Daniel Reynoso-Velasco1* and Robert W. Sites2 1Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91070, MÉXICO. E-mail: [email protected]; 2Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, U.S.A. E-mail: sitesr@missouri. edu. *Corresponding author. ABSTRACT The state of taxonomy of the Mexican fauna of the family Naucoridae is summarized and is fairly complete as a result of recent research. Currently, 71 species from six genera and four subfamilies have been recorded from the country. Species richness is distributed in the subfamilies Cryphocricinae: Ambrysus Stål (53), Cataractocoris Usinger (3), Cryphocricos Signoret (2); Laccocorinae: Interocoris La Rivers (1); Limnocorinae: Limnocoris Stål (10); and Naucorinae: Pelocoris Stål (2). Recent works have focused on the fauna of the genus Ambrysus. Additionally, studies are required for the genera Cryphocricos and Pelocoris, while a taxonomic revision of the genus Limnocoris is close to completion. A key to the subfamilies and genera of Naucoridae from Mexico is provided. Key words: distribution, aquatic insects, Hemiptera, North America. RESUMEN Se resume el conocimiento taxonómico de la fauna Mexicana de la familia Naucoridae, el cual es bastante completo debido a estudios recientes. Actualmente se encuentran registradas para el país 71 species pertenecientes a seis géneros y cuatro subfamilias.
    [Show full text]
  • Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon
    Conference Proceedings. Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, 2002. http://www.wetlands.dri.edu Algae and Invertebrates of a Great Basin Desert Hot Lake: A description of the Borax Lake ecosystem of southeastern Oregon Joseph Furnish Pacific Southwest Region 5, U.S. Department of Agriculture, Forest Service, Vallejo, CA [email protected] James McIver Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, LaGrande, OR Mark Teiser Department of Oceanography, Oregon State University, Corvallis, OR Abstract Introduction As part of the recovery plan for the Borax Lake is a geothermally heated endangered chub Gila boraxobius (Cyprinidae), alkaline lake in southeastern Oregon. It a description of algal and invertebrate represents one of the only permanent water populations was undertaken at Borax Lake in sources in the Alvord Desert, which receives 1991 and 1992. Borax Lake, the only known less than 20 cm of rain annually (Green 1978; habitat for G. boraxobius, is a warm, alkaline Cobb et al. 1981). Borax Lake is the only known water body approximately 10 hectares in size habitat for Gila boraxobius, the Borax Lake with an average surface water temperature of chub, a cyprinid fish recognized as a new 30°C. Periphyton algae were surveyed by species in 1980. The chub was listed as scraping substrates and incubating microscope endangered under the Endangered Species Act slides in the water column. Invertebrates were in 1982 because it was believed that geothermal- collected using dip nets, pitfall traps and Ekman energy test-well drilling activities near Borax dredges. The aufwuchs community was Lake might jeopardize its habitat by altering the composed of 23 species and was dominated by flow or temperature of water in the lake.
    [Show full text]
  • Hemiptera, Prosorrhyncha) with Special Reference to the Pregenital Abdominal Structure1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Justification for the Aradimorpha as an infraorder of the suborder Heteroptera (Hemiptera, Prosorrhyncha) with Special Reference to the Pregenital Abdominal Structure1 M.H. SWEET Abstract: Aradomorpha SWEET 1996 is replaced with Aradimorpha because of homonymy with Arado- morpha CHAMPION 1899, a genus of Reduviidae. The Aradimorpha differ from the Pentatomomorpha s.s. and the Leptopodomorpha in having a plesiomorphic connexivum of dorsal epipleurites and ventral hy- popleurites rather than having the connexivum turned over so that the hypopleurites are dorsalized and the epipleurites folded into the abdomen. In most Aradimorpha, in both males and females, sterna 3 to 7 are free with intersegmental conjunctiva; terga 1-2 and 3 to 6 are united, but all epipleurites are free. In the Pentatomomorpha at least abdominal sterna 2 to 4 in females and sterna 2 to 5 in males are uni- ted or fused without conjunctiva. In some aradids the hypopleurites are united or fused with the sterna, but hypopleurite 2 is usually free. Sternum 2 is sometimes united to fused with sternum 1 and the meta- sternum. The abdominal spiracles in the Aradimorpha are ventral on the hypopleurites, although some- times very lateral in position on the hypopleurites, with the exception of the Chinamyersiini in which spiracles 4, 5 and 6 are dorsal on the epipleurites in Chinamyersia, and 5 and 6 dorsal in Gnostocoris, whi- le in the Tretocorini (Tretocoris and Kumaressa) spiracle 2 seems dorsal but is actually very lateral on the hypopleurite. In the Termitaphididae, epipleurites and hypopleurites are distinct, forming mobile lateral abdominal lobes.
    [Show full text]
  • Laboulbeniales on Semiaquatic Hemiptera. V. Triceromyces Richard K
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 11 | Issue 3 Article 2 1986 Laboulbeniales on semiaquatic Hemiptera. V. Triceromyces Richard K. Benjamin Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Benjamin, Richard K. (1986) "Laboulbeniales on semiaquatic Hemiptera. V. Triceromyces," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 11: Iss. 3, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol11/iss3/2 ALISO 11(3), 1986, pp. 245-278 LABOULBENIALES ON SEMIAQUATIC HEMIPTERA. V. TRICEROMYCES: WITH A DESCRIPTION OF MONOECIOUS-DIOECIOUS DIMORPHISM IN THE GENUS RICHARD K. BENJAMIN Rancho Santa Ana Botanic Garden Claremont, California 91711 ABSTRACf Six species of Triceromyces (Laboulbeniales), including the type, T. balazucii (on Hebridae), parasitic on semiaquatic Hemiptera, were studied at the light-microscopic level. Descriptions are provided for all of the taxa, and features of developmental morphology are described, compared, and illustrated with photographs and line drawings. Four species are described as new: T. hebri (on Hebridae), T. hydrometrae (on Hydrometridae), and T. bi/ormis and T. bullatus (on MesoveJiidae). The species growing on Hebridae and Hydrometridae are monoecious. The two species on Mesoveliidae develop monoecious and dioecious morphs, which occur together on the same host individual. This phenom­ enon is recognized and described for the first time in the Laboulbeniales. Two species, Autophagomyces poissonii and Dioicomyces mesoveliae, previously described from a species ofMesoveliidae, are shown to represent the monoecious and dioecious forms of a species of Triceromyces and are transferred to this genus as T.
    [Show full text]
  • Monitoring Wilderness Stream Ecosystems
    United States Department of Monitoring Agriculture Forest Service Wilderness Stream Rocky Mountain Ecosystems Research Station General Technical Jeffrey C. Davis Report RMRS-GTR-70 G. Wayne Minshall Christopher T. Robinson January 2001 Peter Landres Abstract Davis, Jeffrey C.; Minshall, G. Wayne; Robinson, Christopher T.; Landres, Peter. 2001. Monitoring wilderness stream ecosystems. Gen. Tech. Rep. RMRS-GTR-70. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 137 p. A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitor- ing protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the detail and frequency of the measurements. Stage 4 supplements analyses of stream biotic structure with measurements of stream function: carbon and nutrient processes. Standard methods are presented that were selected or modified through extensive field applica- tion for use in remote settings. Keywords: bioassessment, methods, sampling, macroinvertebrates, production The Authors emphasize aquatic benthic inverte- brates, community dynamics, and Jeffrey C. Davis is an aquatic ecolo- stream ecosystem structure and func- gist currently working in Coastal Man- tion. For the past 19 years he has agement for the State of Alaska. He been conducting research on the received his B.S. from the University long-term effects of wildfires on of Alaska, Anchorage, and his M.S. stream ecosystems. He has authored from Idaho State University. His re- over 100 peer-reviewed journal ar- search has focused on nutrient dy- ticles and 85 technical reports.
    [Show full text]
  • Entomología Cultural FACETAS DE LA CIENCIA
    Ensayos sobre Entomología Cultural FACETAS DE LA CIENCIA José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores Universidad de Guadalajara FACETAS DE LA CIENCIA Ensayos sobre Entomología Cultural José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores FACETAS DE LA CIENCIA Ensayos sobre Entomología Cultural José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores Universidad de Guadalajara Cuerpo Académico de Zoología UDG-CA-51 2011 PATROCINADORES UNIVERSIDAD DE GUADALAJARA Dr. Marco Antonio Cortés Guardado Rector General Dr. Miguel Ángel Navarro Navarro Vicerrector Ejecutivo Lic. José Alfredo Peña Ramos Secretario General CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS Dr. Salvador Mena Munguía Rector Dr. Enrique Pimienta Barrios Secretario Académico Mtro. José Rizo Ayala Secretario Administrativo DIVISIÓN DE CIENCIAS BIOLÓGICAS Y AMBIENTALES Dr. Carlos Beas Zarate Director Dra. Mónica Riojas López Secretario DEPARTAMENTO DE BOTÁNICA Y ZOOLOGÍA Dr. Ramón Rodríguez Macias Jefe de Departamento CENTRO DE ESTUDIOS EN ZOOLOGÍA Dr. Sergio Guerrero Vázquez Facetas de la Ciencia: Ensayos sobre Entomología Cultural es una publicación de la Universidad de Guadalajara. Portada: José Luis Navarrete-Heredia Primera edición: 2011 D.R. © Universidad de Guadalajara Av. Juárez 975 Sector Juárez Guadalajara, Jalisco, Código Postal 44170 LaEdición corrección y tipografía: de los manuscritosJosé Luis Navarrete-Heredia estuvo a cargo de los autores y coordinadores. PRESENTACIÓN - El científico es un ser humano. Como tal, no está exento de sus pasiones, debilidades y obsesiones. En el que- hacer cotidiano, conocemos a varios colegas que les gusta la literatura, el cine, el teatro o la fotografía. Son apasionados de la música e incluso la practican.
    [Show full text]
  • Iowa State College Journal of Science 18.2
    IOWA STATE COLLEGE JOURNAL OF SCIENCE Published on the first day of October, January, April, and July EDITORIAL BOARD EDITOR-JN-CHIEF. Joseph C. Gilman. AssrsTANT EnrToR, H. E. Ingle. CONSULTING EDITORS: R. E. Buchanan, C. J. Drake, I. E. Melhus, E. A. Benbrook, P. Mabel Nelson, V. E. Nelson, C. H. Brown, Jay W. Woodrow. From Sigma Xi: E. W. Lindstrom, D. L. Holl, C. H. Werkman. All manuscripts submitted ~~Quld be apdressed to J . C. Gilman, Botany Hall, Iowa St_a.t~ !Go~e~e.: !f..~s. I!J"!a; • : • • , . ~ . .. All remittances sfulolB :be ~tldr~~sed° to ~~.,"dQ~iiate Press, Inc., Col­ legiate Press Buildir\g, f\,m,.e9. lewa. • • • I • •• • • • • 0 Single CoP.~~s;''1.0ll ci;_c~~ V~.t~ ~~Il,:il0''. ~$2.QO}.•.A:U,.ual Subscrip­ tion: ~3 . ao;:in'Ca!'lada.$3.25~ Forei~. $S.!i0. ~ •• •• : ••• : ·· ~ .·· .............. :· ·: . .: .. : .....·. ·. ... ··= .. : ·.······ Entered as second-class matter January 16, 1935, at the postoffice at Ames, Iowa, under the act of March 3, 1879. THE COCCIDIA OF WILD RABBITS OF IOWA II. EXPERIMENTAL STUDIES WITH EIMERIA NEOLEPORIS CARVALHO, 1942' Jos:E C. M. CARVALHO' From the Entomology and Economic Zoology Section, Iowa Agricultural Experiment Station and the Fish and Wildlife Service, United States Department of the Interior Received December 10, 1942 During the author's experiments with coccidia of wild rabbits in Iowa, the most complete studies were made with E. neoleporis, because it was able to grow in the tame rabbit. Experiments were carried on to observe its behavior, life cycle, biometrical or physiological changes, immunity relationships, etc., in the latter host.
    [Show full text]