<<

GAP Quantique Geneva University

From theHLSC Report tothe underbelly Quantum Technologies,Quo Vadis? spot Soft

GAP - Quantique, University Genevaof Quantique,

Nicolas Nicolas Gisin SRA

1

GAP Quantique Geneva University

Polarization Dispersion Mode *

P.M coupling A single mode fiber behaves like fiber.a manymode 4’

3’ * 2

Many path 4 1 2’  interferences 2’ 1’

Technology, J. Lightwave IEEE al., et NG

2 9 , , 821 - 827, 1991. 827,

GAP Quantique Geneva University

Laser Interference between paths in the test fiber test the in paths between Interference Sensitive to environment artifacts environment to Sensitive High coherence High Polarimeter Swisscom SOS very carefully.very Wechecked everything thatHow can be? components! of the «sum» largerPMD, the than large anomalously observe we Sometimes

:

3

GAP Quantique Geneva University

B. Huttner,B. Commun.Optics Gisin,N. andCh.Geiser AnomalousPMD 142 , 119, 1997; IEEE J. Quant. Elect., 2000 Elect., 119,J. Quant. , IEEE 1997;

4

GAP Quantique Geneva University

• • Slow Slow and fast light in an optical fiber

Experimentalresults Signal velocitySignal remains velocity Group constant increases From optical technology to subtle to technology optical From quantum measurement effect measurement quantum

PRL 93

, 203902, , 2004 203902,

5

GAP Quantique Geneva University

Partial informationonthePartialnumber ofphotonsinsystem measurementthe (weak But pointerthe when anon has + post Considerdetector simplea textbook model: of photons in the state.inofthephotons numbervaluecorrespondingtothethe Abyshifted is pointerascaleonclassical σ Weak QuantumMeasurements

Central Central theme quantumof technologies - selection selection

 - zero spreadzeroσ detectortheonly gives a

weak values weak photon numberphotonmeasurement δ initialIf thepositionofpointer the is - peaked,it correspondsa projectiveto

| S

B

) )

6

GAP Quantique Geneva University andEntanglement Nonlocality Quantum one random event that manifests itself one randomthat manifestsitself event at severallocations. Entanglement is nonlocal randomness: Aspect et al.Aspectet

1981

1997

7

GAP Quantique Geneva University

A loophole Ronald Hanson’s group - free free in Delft

GAP Quantique Geneva University

From Bell tests tests Fromto Quantum Bell cryptography Alice 100% 100% correlation W. Tittel et PRL al.,

No cloning No cloning Applied Applied :  * 

perfect key 81 secretkey , 3563 - 3566, 1998

Bob

9

GAP Quantique Geneva University

* J. Modern J. Modern optics Electron. Letters Applied Phys. Lett. Nature 378, 449, 1995. below lake Quantumbelowlake cryptographyGeneva Alice

PBS

48 33 , 2009 , 586 70

, 793

- 588, 1997; - 2021, 2001. - 795, 1997. 34

, 2116 . t t A - 2117, 1998. Bob F.M.

10

GAP Quantique Geneva University

QKD and efficient New simple protocol

repetition transmitter 2.5 2.5 GHz

rate rate

Ultralow fibers - loss

Superconducting developed detectors detectors Geneva

in

GAP Quantique Geneva University

x

Secretkeyratedistance vs x

X Toshiba 2018 and 2017 2Mbit/s 2Mbit/s 60 km GVA 2019 Huang Huang et. al. 2016 best CVresult:

GAP Quantique Geneva University

If p(a,b|x,y) violates some Bell inequality,Bellsome violates If p(a,b|x,y) x=0 x=0 or1 After publicly announcing a fair sample of their data, 0 0 1 Device a irrespective of any the any of detailof irrespective Alice untrusted then p(a,b|x,y) contains secrecy contains p(a,b|x,y) then

Alice Bob’s and information is entirelycontained

- Independent info QProcessing in in conditional the probability implementation ! implementation p(a,b|x,y)

Bob untrusted y=0 y=0 or1

0 0 1 b

13

GAP Quantique Geneva University

Q computing & supremacy Q computing

14

GAP Quantique Geneva University

Continuous Continuous measurementweak

15

GAP Quantique Geneva University

Multimode QMs to solvethe RateQMs Multimode Problem Bridging Bridging long distances Quantum Quantum Repeaters practical repeaters Multimode required for QMs N Single -

mode storage:bylimitedratemode - modestorage:ratelimited by L

N  L 0

/c

0

/c

GAP Quantique Geneva University

photon in controlledand reversibleGoal: a photonic of mapping

quantum state quantum state onto a longlived atomic ensemble. is now is now coded in a huge entangled states The quantum state of photonthe Quantum memory of of billions of « crystal crystal doped with billions billions ions of

atoms

»

Q Q state in same time at desired photon out

17

GAP Quantique Geneva University

Multimode Multimode Storage using Ensemble with with the Time multiplexing in Ensembles can store light using different degrees freedomof Atomic Atomic Frequency Comb rare - earth - ion ion doped crystals

(AFC) (AFC) memory - based QMs

GAP Quantique Geneva University

Multimode Multimode spin About Stokes/antiThe 12 temporalmodes12 Second C. Laplane, P. Laplane,C. M. PRL and N. Gisin, Afzelius, Etesse, J. 118,Jobez, (2017) 210501 - Stokes pairsahave coherence oftime 410 ns.Stokes - order crossorder - photon correlations

per 10 per10 microseconds detectiongates. - correlation functioncorrelation

1 ms

storage

GAP Quantique Geneva University

in in Towards long duration storage (>1seconds) 151 Eu 3+ :Y 2 SiO 5

GAP Quantique Geneva University

hybridization Novel material based on the

of electronic of A. Tiranov,A. S. Ortu, A. Welinski, Ferrier,A. P. Goldner, Gisin, M. N. Afzelius - nuclear states

Nature Materials 17, (2018) 17, 671 Materials Nature

GAP Quantique Geneva University

22

NG,Entropy, «25 yearsof Q teleportation», GAP Quantique Geneva University

of networksof Certify quantumness andjoined measurementsQ with independent sourceswithindependent Quantum Networks

21 ,325 ,325 (2019)

23

GAP Quantique Geneva University

 perform measurement,any orchange the tolocal topology, There are inputs. no randomness? contain some prove outcomes that the to How quantumness? to proveHow input. A without toy 6 universe, qubit

that should that should not affectthe B The The Trianglebinary withoutcomes

Bob

However, Alice can decide not to

b=

±  1

 Alice - a

C correlation:C = ±

1

 Charlie Charlie

c = c ± exploit the NSI principle? NSIexploitthe 1

One has only to only has access One How to formalizeand How no - signaling

P(a,b,c). .

24

GAP Quantique Geneva University

 perform measurement,any orchange the tolocal topology, There are inputs. no Dave and and Dave areBob Alice Charlie and are

that should that should not affectthe B The The Trianglebinary withoutcomes independent Bob However, Alice can decide not to  Alice a

b= independent =

± ±

1 1

 -

C correlation:C .

. Similarly,

Charlie Charlie Dave d= c = c  ±

± 1

1

no

- signaling NSI

.

25

GAP Quantique Geneva University

b

γ

*

α a

β

c

MachineLearning Neuralnetworks p(a| γ β

γ )

p(b| α γ

α

)

p(c| “cat” β α

β

)

26

GAP Quantique Geneva University

Quantum Networks arXiv:1907.10552 (Machine learning) arXiv:1905.04902 (NSI principle) arXiv:1906.06495 (Salman Triangle), PRL arXiv:1901.08287 (Finner ineq.), PRL

123 , , 070403 (2019) 123 . . 140401 (2019)

27

GAP Quantique Geneva University

• • • • A practical random number generator Easy to pindown the origine the of randomness Only quantum physics offers fundamental randomness A conceptually simple entropy source From (pretty trivial) Physics to Physicstrivial) (prettyFrom (serious) Technology (serious)

GAP Quantique Geneva University

29

GAP Quantique Geneva University

Launch of QRNG Launch - chip

GAP Quantique Geneva University

...... S Small P withQA2Quantis witavailaiblityHigh h S Q Q Standardscompliant S t t m r a u u and and o r a a a d v n n l Ne i New Quantis Appliance designed for high availability data centers L w l d t 6 tis e e a a a i a e r formfactor withhi r st s 20 s r r u r s d x d e s t s Q n r M

a G c c R c M n o o

h N QRNG ChipQRNG e domness as a service for mul servicedomness a as m m

Q G n o p p R e

f l l N r i i a a a QuantisQRNGchip G 16Mbps n n t t t h redundantpower &fansh i c o r r h r a n a a i p n n ndo

certified forcertified automotive(AEC Quantis PCIe d d f o o o g r a m m m

her throughpuher n higher throughput higher n n n d ess ( ess e ess ( ess

s 60Mbps s ( s NIST800 NIST800 m eet QRNG

c a NIST800

ti r

t ple remoteapplicationsple d NextGeneration

- - (10Mbps and 60Mbps(10Mbps 90A/B/C compliant 90A/B/C compliant90A/B/C

-

20Mbps raw 20Mbpsdata - 90A/B/C - - Q100) chip r e – q

6Mbps u ) ) irements)

i n )

F I P r S a w 140

d a - 2 compliant2 t a

GAP Quantique Geneva University

> 10MBit/s Realtime Realtime USD measurements Based selfon

random estimation of the Entropy

- testing approach and

bit bit extraction

B → C O Ap m t i s n d t where p m t b i t p i [ d T m t at b of op s t b of i p i an p Co t 2 f of m n n 43] s m l or o ar h h at o u i t t v

p ( ( ( i e e r om u ou e on h o ⇥ at r c e d g i at u λ e b b e c at r m o a I e s g F t d e n t p a s at ⌫ k e n i e y p p | | e d n ol e c i n r d i ) c i e n . on x x a n an i l - n e f m bx t 2 s = s e on l t p r t .

. e n i n f m d e fi e a t t m e s of . i ) )

d r s e - i d i i T e b d fi i A, e t m n r al m al u gi b ci

r i ou p h t e T , x n s y s n ) e e X w i o i s an n i u i n , h t e ( c s m i d t ⇢ t e

. e s X n p F t e en p p l e x v a h n t fi ● ● r c x

or e d p p an r r al s i e y an r d t x r d e n x u s h u op ( - a o t l l e b e at i i g T n u s a m e , c ⌫ e op I N S

e fi e b s r u h at fi t

p ( n t l at U p , f n m w p n

e om r c i p w t bx , w r n u s | δ s

or h d e n 2) h a m t t = e n y ⇢

a i p d l p x al r t t ( b an t t S b

o y d t y , t a. a a l i e h i

i h gi at t e i S r x x l , al ) e

e i l ) e p s r i D i t as v m r n e b e

v - of t y at ⌫ f s n o l e t ,

an i e ( Data: p(b|x) Data: - ( n of r t e op e ) r s e d e d e s e c o + o i e ot x w bx

e |

l e i e h l i

2 1 n at t

t e s w i i b X c s f h r B b l m i s e c d l e p n p om = r z f n n p ar

s b r h ou e t s e y e d , p l y r o t λ δ d an s t e o e H ou

x 0 f u ap os m e c

e ab r m i p ,

ou om d at e e h t i e ar t n λ a r r

t . on t m n ogr i t p u c )

o n b h as on g s h as q o om n ⌫

v i f x e

e ge b ab ot λ , h h at p i

p au b n s d t b u s H c

s a O e l e v ou , t e bx u e e ↵ n

d b

( o 0 δ s 6 e ou e i at 0 ( s s

p s , c y l u d i i n

i 3) , m n r t an r

d e e λ r , ,

u v s e am t r δ u n min a x n c λ s t i d u t n s

r al t r y s h s f i c n n l

c b e n b, t h e on h λ e | ) 1 w l on ot

c p m p e l r e a w h e e t r s at e f t

t

c , e t at e at a r p d t on y -

1 of e c l e c as r ø r e ar g ⇤ t m s m . o i c s + e p − s a e at op n x i b m h t t on g on e t i i o s r e

e e s as e fi n l . = an n e + s n e l e h a t = r b i y t S i ou ( d e ax t I i e y i c fi

d s t

c r n e e e gi d i s H c r o o p s n

g g 2) o e n t 2 1 e

n i s h ou ol l l n

D s e ( n d , Not s d ac b h t Q u c g i t h o y g − of d v f r p ar x 2 1 a u X t t v n v { n e g op e i b,x h d Tr λ o s v t

at ou , P s ou at of e an = . w h t u l c m e n i R δ v n Tr c t n i d r t 0 n t f f al e o h p l n y v r c h f 1 . ( t ⇧ e e n h λ t r u an i ac e ( og , i t i d t or r T e n [ e e NG ol e λ s h S r d n p a t e r - om m n d o ) d x u n c H w om i l ⌫

[ t al r

Ho e g b λ t s ot ou s

h 1 o w : r m fi ⇢ b e D . d t v , u e e t o on a s e bx - d 2 h

, d a a 1 e u . t n ,w s i b u i x y v t r l l p e λ i s m w i ( i h t on (1 x o m d i s e P e al c s t u ar on r h t t i t s t p i r al w e ⇧ 0 r p e p n e l s y at p e t p n c an at u p t i h a h l m , an an ) h e e v r H g t ( r e fi f h ap λ i a r e i h ol e s ø λ u a e os e b − . n u or r ob o b n t e i ) t

v 1 e

a, f s b at b m t t e n p c r ] i b b e d b h | min i . r t s S w i d d or p f , ] s c t h e x h i t l an s l c f t e v e e . ar δ or i e i ou m ab ab e of as 1 p al om y s u r m i p b n h on t e e v ) s q an r u λ ar b, p b x e t , t As − e t i r s al t e 6 . i u e l s g 0 ak ø s m e h c l r p of ge n ob p of g i S l c

t ob y i , a p i i e n gi s y i , l i ) i an n , as c Tr an h x u n e i d , e 6 ar c o i D s r u i e e λ p t fi 0 k u t e n s e r − h r e al e v at s g w m u ab r l al t gi r c o i p u . l t c 1 e P s i l d e u

e d [ t t ( i e

e e h f e δ e m s ar s ⇢ c i t n e ( al s s r fi i u m e 2) r e e ⌫ v om n s d i n i =0 r e h c b i e e R u x i n v o o i e c n i as i x bx e [ e l s t e e l n p u m | ge n n x e e ( 42] i ⇧ v t e n b y e

x i x p g n e r n

v NG x ( x t h c 2) u l fi n s i i c d e u , l n ) a y d P d ou ( y ar p t ). e al s t s ø λ p l t y US n , t or S t t r e e x r i w r e al t x e i b l . s ] c O l s a 1s y m e e d ac gh v e i D d e s e s } w ai s ) r q t h r r y k d p x r o O t m s al m v t i VM , r D T d u d t d e e ( ou at

P of e h s , p r u f p n at or u t ac al ( c t an i u e ou an u at an t an t at at e ⌫ e i x t ( ( ( m ( i c n e his r e n w . on r e h c d c c n 2) 1) n 4) u t 3) = u bx e e i l o- a- of s g. r t o i i h n d d d h t a a a o a e e e s s s r r t ) t i ------ø m s r

) e s c . e

n t r

c m i

a

e

m

ar t t p t h f i i t al i s d s am l t of w t an p W t a s C t F d p exp( where bins e b an s m ou w t on w r u

t

n n n ap

r

w w

o

o h h h i

h h

e t

i t e

n

r e e r

i h i

s or i

on m e

om e i

O h

l

r at

g d g r n e

r f s

e t n

i ob e e e e p at at

l l t A c I W y

o o o

d r l ot i

at

e s

as v p

p i

n at b p y i m s i h p n b o d W s p a w n t m s c e d d i s e s as w t e p i e as i s e e y − ou ar i e c s n d p on o ab c t l t i t i t s t s gu t n s r p al m p e e s c t t n u i n .

t p o n on r i h os i e l h , u e d at r o , os c c s h at v v t g n o at l s y r n ot n | [ e n c a d g u p ak d t e e u on ↵ p i i at m T e e i 44] ⇢ u ac ou i i d i gu d n 2 o r c l t o ot t n n e o c r s m t r c c i s p v e | m s i n e r e 0 o y l e an m d b i c | h 2 w d e i o s p e t l i u e e u c s e e s 0 s r c e t b u al u s n k p t c o s y . y p e ) e i i . . r . i s . e r t on l f r an i ar e n p n p i t h of s s l ol t n , l m i m g s al ar y at n i n an e c ac i u . P ar y i d v at e r n h o w e T d n p t i Not e S No z g, c al t t an c e c | n . v l e . i i s b l d e g ab t i e h t e at at e gu t or s i an e t s o e on on r h I d e q r e e m n 1 s h n d i i r e d e n n i c at d ob e ak I 0 s d c δ on ou r I d i u om =0 c ⇢ r ad s r at s c r i i t u i al t p s . o r n i v i y e i ad u e t on on t . d or i al l e e an 1 , t e s x c ou , = n s i n u h at h h s ( m l l e o s h an t = as i i e , t c an | W e v s t ar at e ↵ t t t z g i n ot , e t r ↵ fulfill e . e d ↵ y n oh n i h t d n I an h h w s i r i or n i | r h e 1. | n n of F e n s d i on at u v n h ! s M | d | v p ↵ e at i e s n < , e e f e t i d o u e 2 f s ↵ c g i v u e s | m i r s e t i g e l e e i r n t e t s ot | s v . n ↵ n g. e s e m t e om on i at ac A i r i t 2 r r om PL . age 0 n h p c t c t t , 1) e d at v m i r w ot e | e i e s t , | i h ge h t h fi ou ou e f r 0 p r e W an

m e , e s r fi gi h n h b al h F i fi e o x n 2 l e , e u i d oi e m e T t s n e t s t ap t c e E 1 h p e n t e a r t t v t am s e i n r h t h e s e t ( t r c s i h of on p c s i h h of t y h p i o ar ( e a p i M t e t h l ⇢ i t ou e ( n t e | e p n t w h n s b e as ad a) i c e r e w r e at , n e s u op at os 0 e t e c h =e i i e c al of at a f e e s ou r u p s i t y w e i E l , s c p i e c or n oh p t m s . r an m t ol d t l s t b h d o n e r v c o os s ⇢ e on v h t t y l u f h oi ⇢ at or e h d N oi i e v v s y y i e | v e n e i e i i ou 1 p m s e d s t i b s m

s t 0 e x on m , e m of ac n n e s s r c He s e s n ) d h r n T t t l e ) i of r b l n t i d p e y e i t r i t t 1 t r e ot at on w h at t e . e s b an e r e t n al t e h > h l A l ak m u l i ou i i m i ( ab h ap u y n e b ap n s m t r l s r of e i of w of t − r e i ar u t t e ) e an T al = t c t e t a ou t at on T i t d h ou e e b h o i δ s s n i h w t m d h r e p o m o v | n q n s US at e I am v i e t ,w v e h ↵ i i d t v p v i i e t y l i m | ⇢ o i b n O i g u t e d s n of s s on r e r i e n 0 i h n e h n m s e | e m e i r at e 1 e d d p t t d u e e i m 2 i as d s d i t t p g r e o ⇢ N e s d f r D w at s i w p e s p h i r ) t | r i h e or s d l s n i i i e e h i 0 c c l s i an ↵ . p t s a e ap ot . e n x gn t r i u e n s or e a e on S e m t c Q i t gu r e fi c o e a h of v n e of d e , c ↵ e m i an m m g r w i W r i ge om i d t d v p o n ai p n t c t d . m on e e m d t K e e i e b l t o w u t at i e fi b e ( t at c s v e e y ar ai m u gu t n t h w r , e n d s l e h i F i D t e i as r ol n l h h ol c e ab e o p h d s t . u n n t i e a w h i e r al i s e i e e i w an t n t t e e e t ⇢ o on i t on e r os . s at , s i t ) v i u | e n w p d at y s s h s d i t m is h s gu 1 al l p ↵ d as s e m at . m m t h i t of t e t r r an d t e o . e ak n i e a h r e at , r s c i i h e pure e ) al e . t s i e d ( s e e on ot the e e e x ou i i g w u an I m s p n i s t d e m goi u m u t t s n y m t s as as on e o f s e e Not am p t at w n i i i ar h h o s s r m v r v s e r m m m s l t n e e i u n t on d ob t t i ar i at os u u ( ( e i e c i w n i l e e n an n n h r h e h c d t p 6) 5) c as ar ot fi- n e m of of s ol = e e al e r r r s i is t i h h d g o 3 g g e e e e e e e s s s s r ------. , , GAP Quantique Geneva University

additionalphysicalnoisecomingfrom implementation imperfections sourcequantumnoiseduepartlyis torelevant the quantumprocess someand difficulttoperfectly. implement This meansthatincases, mosttheentropy a of entropyThe estimationnoiseofsourcesquantum based ison quantumphysics nonnumberswith tois establish aarchitecturefunctional for generating testingofandseries random thanksits toprobabilistic nature. Hence,a clear goalfor the Quantumgenerationphysicstheallows ofunpredictable randomsequencesbit

RecommendationITU Quantum entropystandardization .

- deterministic random bit generators (NRBG) (NRBG) randombitgenerators deterministic - TX.qrng ID Quantique PROPRIETARYQuantiqueID - a : a

securitycommunity idealmodels exploiting exploiting .

thatare

GAP Quantique Geneva University

3.2.6 NOTE 3.2.5 3.2.4 3.2.3 NOTE 3.2.2 NOTE 3.2.1 terms:followingthedefines RecommendationThis 3.2

additionalphysicalnoisecomingfrom implementation imperfections. sourcequantumnoiseduepartlyis torelevant the quantumprocess someand difficulttoperfectly. implement This meansthatincases, mosttheentropy a of entropyThe estimationnoiseofsourcesquantum based isonidealmodelsthatare quantumphysics. nonnumberswith tois establish aarchitecturefunctional for generating testingofandseries random thanksits toprobabilistic nature. Hence,a clear goalfor security thecommunity Quantumgenerationphysicstheallows ofunpredictable randomsequencesbit

RecommendationITU – – –

examples of quantum phenomenon include quantum state superposition, quantum state entanglement, Heisenberg uncertainty,Heisenbergq entanglement, state quantum superposition, state quantumincludephenomenon quantumof examples non of‘physicaldefinitiontheto isdefinitionidenticalthis ‘nonofdefinitionthe to isidentical definitionthis Quantum entropystandardization signature of a quantum process: A set of measurable statistical properties that are characteristic of a given quantum proc quantum a givenof are characteristicthat propertiesprocess: a of quantumAstatistical signature measurableset of phenomenonquantumone(QES):least at on entropysourcebased quantum entropysourceAn th ofsignatures measuringbyamount entropy generated their assess willQES2:that sources Aentropy quantumof subclass implementatithe measuringbyamount entropyminimum a given assess willQES1:that sources Aentropy quantumof subclass os diode(s),(noisy experiment a physicaluses or hardware dedicated uses thatsources:source entropy Anphysical non TermsRecommendationthisindefined - physical entropy sources: An entropy source that does not use dedicated hardware but uses system resources (RAM conten (RAM resources systemuses but hardware dedicatedusenot does thatsources:source entropyentropy An physical

- deterministic random bit generators (NRBG) (NRBG) randombit exploiting generators deterministic - TX.qrng ID Quantique PROPRIETARYQuantiqueID -

a

- physical non physical

- deterministic random[bgenerator’bitin given deterministic - deterministic random bit generator’[bbitingiven random deterministic

-

NISTSP 8

- NIST 00 SP800 - 90B]. ess according to some assumptions provided in the description, and that permits quantification of this process’thisof the onquantificationimpactpermitsthat and description, theinprovided assumptionssometo according ess - 90B].

cillators, event sampling like radioactive decay,radioactivelikeetc.). sampling event cillators, uantum tunnelling, spontaneous emission or radioactive decay.radioactiveor emission spontaneoustunnelling, uantum e quantum process. quantum e t, thread number etc.) or the interaction of the user (time between keystrokes etc.). keystrokes (timebetween usertheof interaction theor etc.) numberthread t,

on imperfections and verifying that they are within defined acceptable value ranges.valueacceptable defined within are theythat verifying and imperfections on

me asurement outputs in a manner that enables a direct or indirect estimation of the minimum amount of entropy coming solely frosolelycomingentropy ofamountminimum theof estimation indirectordirect a enablesthat a inmanneroutputs asurement m t m he quantum process. For example, one signature of is the violation of Bell inequalities.Bellofviolation isthe entanglement quantumof signature one Forexample, process. quantum he

GAP Quantique Geneva University

WASHINGTONDC BOSTON

BRISTOL GENEVA

ID Quantique

SEOUL

• • Business2 Worldwide

Quantum QKD & QRNG QuantumSafe Employees 5 100

Sites

units Sensing presence

:

GAP Quantique Geneva University

QKD and efficient New simple protocol

repetition transmitter 2.5 2.5 GHz

rate rate

Ultralow fibers - loss

Superconducting developed detectors detectors Geneva

in

GAP Quantique Geneva University

• Faster Faster and smarter detectors Superconductingnanowiresingle photondetection systems Commercially availableat IDQ Jointthe development with PNR withenabled Fastest detectors SNSPD poorly understood poorly amazingly is of SNSPD Physics

• • • • • Parallelly 2 photons 3 photons 4 photons 1 photon technology Patent line/detector Only coaxial one resolution Photon nominal >70% efficiency as MHz200 Counting rates as high

- connected SNSPDs lead to lead SNSPDs connected - - pending pending number number

GAP Quantique Geneva University

ID281 ID281 SWISS Superconductingnanowiresingle -

MADE Full Full multi turnkey photondetection systems

electronics timing picosecond With cryostat cycle closed K 0.8 operation continuous and Automated DCR <1 Hz <20 jitter Low MHz 200 to up speed:High 90% to up efficiency detection System detectors of SNSPDrange Broad Up to 16 channel system

- channel channel SNSPD solutions ps

Integratedsolutions mobile

GAP Quantique Geneva University

• • • • • o o o 2020in flight First and reliability safety Enhanced times design Reduced are: Main advantages electro conventional Pyrotechnics usingever launcher space the first will 6Ariane and volume mass, shorterintegration handling, simpler times, immunity interference, toelectromagnetic

Applicationof s ingle cost reductions cost

launcR instead of instead - to

- - build lead lead build - Opto photon detectors to photon pyrotechnics Ariane 6space

-

Rockets

superconducting

separation, passivation andneutralization avionics system Pyrotechnic sub rogram - – systems: systems: vital of part the

responsible responsible for ignition,

GAP Quantique Geneva University

. . . . .  “TACO”: systemPyro control monitoringOpto entire for and performance integrity to designIDQ afiber optic ArianeGroup Fully qualified solutionqualifiedFully by ArianeGroup the optothe in andlocationissue oftype the about information provide conditions, abnormal case of In roomcontrol real Provide Optoentire the of performance real the in time validate to Capable Reflectometry) Domain Time (Optical solutionOTDR performanceHigh for Ariane6: photon Automatic Test Automatic& Test ValidationSystem - pyro chain pyro - time status information to ESAto information status time

- pyrotechnic system pyrotechnic

worked with

-

- - counting OTDR counting

GAP Quantique Geneva University

Control Drivers Lasers Laser Laser Control Control & for Ariane6: photon Automatic Test Automatic& Test ValidationSystem Com

IDQ TACO system TACO IDQ Ariane 6 space launcher program space launcher Ariane 6 TACO: Test & validation of Opto validation & Test TACO:

     Zero risk to affect the Opto the to affect risk Zero and system testing Automatic connectors of loss return and profile loss insertion theof Monitoring speed High resolution High IDQ SPSPD technology SPSPD IDQ by enabled but means traditional by unachievable Performance performance:and featuresKey 8 8 km OPTO Control OSB

- PYROTECHNIC SYSTEM ARCHITECTURE - Connectors

full asset integrity test in seconds in test integrity asset full –

cm scale cm Connectors

s Connector

- Pyro systemPyro - Pyro system integrity and performance and integrity systemPyro

-

counting OTDR counting s Connector

s Connector

Detonator Optical Optical s Connector

Detonator

Optical Optical

s Connector

Detonator Optical Optical

Detonator ignition activationdevices pyrothechnical82 Optical Optical

GAP Quantique Geneva University

We develop should ahigh added of quantum value industry century. the XX technology dominated all XX the Theofelectrotheory technology and We science basic need Informationopto/ chip QRNG Physics / World Classical th

century and quantum technologies century technologies will and quantum playan role XXI important in the

Vision: XXI - - magnetism was invented invented in the magnetismwasXIX electronics - view

XXI

technology th

st century.Likewise,quantum wastheory invented in

XX st century technology century

tension th century

century

Informationopto/

Quantum

Physics / World th

century and associated and centurythe Internet / 5G Internet/ - electronics - view

 st

.

42