<<

GAP Quantique Geneva University Nicolas Gisin,HugoZbinden, Mikael Afzelius, Rob Thew andFélixBussières . . . . . Large Entanglement Q memoriesfor quantum repeaters andnetworks on networks trusted nodes based Longer distances: Why QKD? Commercial QKDsystem quantum memoryand Largeentanglement Quantum Communication: QKD, teleportation into asolid-state QKD, teleportation GAP-Optique, 1 GAP Quantique Geneva University Used daily by some commercial Years ofcontinuouscommercialoperation t 75 km channel for commercial users. Installed multiplexed quantum 2 GAP Quantique Geneva University Why QKD ? Courtesy of Prof. Michele Mosca How muchof a problem for computing, quantum really?? QKD is 3 GAP Quantique Geneva University . . Depends on: . solution? ( quantum-safe infrastructure withlarge-scale take tore-tooltheexisting it How muchtimewill ( secure? encryption tobe you need How longdo advance? ( computer to be built(or for any other relevant quantum it takeforalarge-scale How longwill x years How soondowe needtoworry? ) y z years years Theorem 1:If ) ) time What dowe do here?? y z x + Courtesy of Prof. Michele Mosca y > z , thenworry. x GAP Quantique Geneva University Courtesy of Prof. Michele Mosca 5 GAP Quantique Geneva University single-photon sources,take itwould With thebestoptical fibers, perfect noise-free detectors andideal 10 GHz How farcanonesendaphoton ? Rate Key Secret There 100kHz 10MHz 10kHz 1MHz Rate 1kHz 1Hz

is P2P

a 100

+

hard

WDM

Distance wall 200 centuries to send1 qubit over! 1000km

Today Today +4

around [km]

Years

0 400 300 Commercial Lab

400

km

! 6 GAP Quantique Geneva University 150 kmofinstalled fibers Long distance QKD: Worldrecords Long distance Lausanne , Optics Express 17,13326(2009) J 1 075003(2009) NJP 11, 250 kminthelab . 7 [email protected] - Institute for Institute Quantum Optics [email protected] GAPseparation. 1400 km Quantiqueoptical downlink: Simultaneous Geneva University 26-29, 40–40 (3)(2009) R. Ursinet al., Europhysics News, (ROM R&D47 M€) Dual-downlink Proposals forquantumcommunication in space and Quantum Information, Austrian Academy of Sciences of Information, Austrian Academy Quantum and detector as“camera”. and adedicatedquantum photo-lens-pod (existing) Using amotorized (ROM R&D1M€) Single-uplink New Journalof ,15, 043008(2013) T. Scheidl,E. Wille, and R. Ursin, A. Kuiper Astronaut s : GAP Quantique Geneva University Network-centric QuantumCommunications J. E. Nordholt, et al., US Patent Applications:al.,E. USPatent Nordholt,J. et 61/693,131, US20130101119 US 20130084079A1, US2013/055430A1, R. J.Hughes al., US et Patent 8,483,394; US Patent Applications: US 20130083926 A1; US2013/055356 Richard Hughes,JaneNordholtandteam Los AlamosNational Laboratory quantum protocol layer: quantum physical layer: application layer: • • • layer: quantum keymanagement(QKM) • • • • quantum secret(QSS) splitting (QKD) quantum keydistribution (QID) quantum identification • • • • • direct QC between userswhomayhaveno quantum randomnumber gen. access (QMA) quantum multiple fiber novel BB84-type QC in • • • quantum primitives classical protocols built from non-repudiation integrity authenticity confidentiality certificates signatures key establishment R. J.Hughes etal., arXiv:1305.0305 GAP Quantique Geneva University Long RangeQKDwithtrusted nodes Battelle Main Campus  800 km Battelle Aberdeen Office Battelle Aberdeen • • Area Washington DC • QKDBackbone Battelle Deployment targeted in 2015 in targeted Deployment > 770km Columbus OHto GAP Quantique Geneva University Physical Protection The SecurityOnion Security Protocols Access Control Cryptographic Environment Detection Intrusion Enclosure Boundary Chassis Battelle Courtesy Dr DonHayford GAP Quantique Geneva University Q repeaters eeoigqatmmmre isagrandchallenge ! memories Developing quantum quantum networks, quantuminternet We stillmissthecapability tostore entanglement: N-photon quantumcommunication: 12 GAP Quantique Geneva University photon in Goal: controlledand reversible mapping ofaphotonic quantum state onto along lived atomic ensem is nowcoded inahugeentangledstates The quantum stateofthephoton Quantum memory fblin f«aos» atoms of billions of « Nature 456, 773, 2008 Today’s efficiencies with billionsof crystal doped  ions 20 % state in same Q time at desired photon out 13 b

GAP Quantique Geneva University  k Δ Δ 

Absorption periodic Absorption Controlling continuous m k  Frequency Frequency , m   j k N  1  Rephasing e 

the ikr 0 j Dephasing , e 

 Dephasing!

i

1  , j t  g 2 1 ,...... Im( Im( e j P P ... j j ) ) g

N Atomic Rephasing after Re( Re( P P j j ) )

Frequency P j  e 

i  j T t

Comb  1  14 GAP Quantique Geneva University Signal Photon AFC preparation Preparation Atomic

Frequency Echo Photon Echo Control

Comb Time M. Afzelius etal.PRA 79, 052329 (2009)

(AFC) emission (spin wave storage) emission (spin 3 levels: delay (AFC echo) delay (AFC 2 levels: preprogrammed Periodic!

Quantum Echo on-demand

Memory re- GAP Quantique Geneva University (a)

Normalized intensity (arb. units) 100 20 40 60 80 0 012345 input transmitted AFC echo Time (

Optical depth 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1020304050607080901000 

s) d d 0 Optical detuning [MHz]  echo  0 5 10 15 20 25

16 GAP Quantique Geneva University

normalized counts 0.0 0.2 0.4 0.6 0.8 1.0

Normalized counts  . . . . . 2.5 2.0 1.5 1.0 0.5 0.0

normalized counts 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 n ...... 2.4 2.0 1.6 1.2 0.8 0.4 0.0  . . . . . 2.5 2.0 1.5 1.0 0.5 0.0 < 1per mode 64 timemodescanbeused tocode32time-binqubits! Multi-mode storageinNd Input mode Input Input modes Input mode Mapping 64inputmodesonto I. Usmani et al.,Nature Communications 1,12 (2010) time [ time [ Output x50 mode  Time ( s] Output mode x50 mode Output  s]  s) Output modes x50Output modes 3+ :Y one 2 SiO crystal 5 17 GAP Quantique Geneva University Entanglement   ‐ preserving   H   1338 HH H 883  VV 

V quantum device then tomeasurement to Quantum Memory 1338 V 883

memory Bandwidth: 680 MHz GAP Quantique Geneva University Entanglement ‐ preserving

quantum

memory GAP Quantique Geneva University S larger thanlocalbound of2Device-Independent Entanglement! Using BelltestasEntanglement Witness Entanglement   ‐ preserving   H   1338 HH H 883  VV 

V quantum 1338 V 883

memory D Magnet Magnet 2 D 1 GAP Quantique Geneva University et. al F.C. Clausen, Bussières, A. Tiranov, M. Afzelius . arXiv:1401.6958 from NIST sspd GAP Quantique Geneva University link) Tomographic reconstruction(short (2x12.4 km) teleportation of Fidelity photon toasolid-state quantummemory Quantum teleportationofatelecom-wavelength Partial Bell State MeasurementBell State Partial andpost-selectedfidelity F.Bussières, al., arXiv:1401.6958 Ch.Clausenet Analysis on a great circle of Analysis onagreatcircle the Poincarésphere GAP Quantique Geneva University Signal What Preparation Input

do

we

Output need Photon

to Echo

do Pulses Control

the

full

AFC Echo

memory hyperfine states Zeeman or

scheme? Time N. Timoney, I.Usmani, P. Jobe GAP Quantique Geneva University

Transmitted intensity Inhomogeneous absorptionspectrum 0.2 0.4 0.6 0.8 -2000 0 Some -1000 (100 ppm Frequency (MHz) Frequency

Basic z, MA, N. Gisin, arXiv:1301.6924 z, MA, 0 153  Eu)

151 700 MHz d=1.3 1000 PRA 88, 02324 (2013) Eu 3+ 2000 :Y 2 SiO 5 5 7 - - - Spectroscopy 580 nm D Excited state lifetime2 ms F Spin coherence time15 msfor Max. absorption coefficient 3-4cm 0 0       5/2 3/2 1/2 1/2 3/2 5/2

Pulses Control 151 102 MHz 46 35 MHz 35 Eu (B=0) 75 MHz 75 -1 MHz GAP Quantique Geneva University Frequency stable laser, o 3. Longertwo-level AFCstoragetime efficiency Method1 1. Highertwo-levelAFC Towards Intensity 1000 500 0 y Frequency stable laser 0 Time,

ptimized combpreparation high 5  s 11.5%

10 SNR Work

and

in long

progress… time time 4. Milliseconds spin-wavestorage 0.6 0.8 0.2 0.4 Intensity 1 0 efficiency Method2 2. Highertwo-levelAFC ‐ lived -0.2 -0.1

y Cavity enhancedQM Quantum Spin-echo techniques 1/  0 ( 49%  s) 0.1 Afzelius &Simon 0.2 PRA 82,022310

Memory 50 ms (2010) GAP Quantique Geneva University Natalia Bruno,Anthony Martin,Pavel Sekatski, Nicolas Sangouard, Rob Thew Nicolas Sangouard, and NicolasGisin 3. LargeEntanglement Geneva University, Group of Applied Physics 26 GAP Quantique Geneva University as macroscopic entanglement ? as macroscopic entanglement crystals count Do theseentangled 6, 234-7,2012 Nature Photonics 27 GAP Quantique Geneva University . . . Quantum =entanglement. -delocalizedbut “only” one macroscopic object, -excitationBillions ofionsina No ! as largeentanglement? Do these2crystals count What ismacroscopic? What isquantum ? Nature Photonics6,234-7, 2012 28 GAP Quantique Geneva University 1- .  Example: 1-photon entanglement BS . . 0 , 1  1 , 0 29 GAP Quantique Geneva University distinguished usingclassical detectors because The components ofthisentangled state caneasilybe Example: displaced 1- 1- .  | Pavel Sekatski, Nicolas Sangouard etal.,PRA 86,060301 (2012)  _ 2  . BS .

.   D

(  ) 1  D 

(  entanglement ) 1

   n D

(  ) 1  3 

n  30 GAP Quantique Geneva University |0 For |  Photon numberdistribution Pavel Sekatski, Nicolas Sangouard etal.,PRA 86,060301 (2012)  D | (  2 >> )|1  , Pguess  +|1 Distinguishability  |   74% Where =|+ For |    |   2 = >> - +|- D  ( , Pguess   )|1   + |   89% 31 GAP Quantique Geneva University billions of atoms .. | 1-  thousands ofexcitations . 2  ...  Toward trulyLarge Entanglement ’s hundreds ofe-bits ’s

...... BS ......  .

j Phase relations. But acomplexsort ofDickestatewithinvolved Inside thecrystal, nolonger aproduct state, ...  j  Quantum memories D

(  ) 1 j  D

(  ) 1 j

  j

GAP Quantique Geneva University N.Bruno et al. , arXiv:1212.3710, Nature Physics 9, 545(2013) 9, , arXiv:1212.3710, Nature Physics et al. N.Bruno Large SizeEntanglement Experiment: demonstrate GAP Quantique Geneva University We measured the concurrence C (a measure of entanglement): We measured C (ameasure of the concurrence

Experiment ( N.Bruno et al. , arXiv:1212.3710 , et al. N.Bruno

one mode,nocrystal

A.I. Lvovski et al., Nature Physics 9, 541 9, (2013) Lvovski et al., Nature Physics A.I. , Nature Physics 9, 545 (2013) 9, , NaturePhysics ): Result 34 GAP Quantique Geneva University        PRL 111, 180504(2013) Relativistic bitcommitment: fascinating Large entanglement is “quantum hacking” ondetectors Decoy detectors arepracticalagain and quantummemories. Quantum repeatersrequire teleportation of sense. Trusted nodesmakea lot z in nichemarkets. exists sinceyears,thoughonly  x+y  Nature Physics 9, 545(2013) 9, Nature Physics ! Panic today Conclusions Geneva Singapore