Entanglement 25 Years After Quantum Teleportation: Testing Joint Measurements in Quantum Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Chance Nicolas Gisin
Quantum Chance Nicolas Gisin Quantum Chance Nonlocality, Teleportation and Other Quantum Marvels Nicolas Gisin Department of Physics University of Geneva Geneva Switzerland ISBN 978-3-319-05472-8 ISBN 978-3-319-05473-5 (eBook) DOI 10.1007/978-3-319-05473-5 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014944813 Translated by Stephen Lyle L’impensable Hasard. Non-localité, téléportation et autres merveilles quantiques Original French edition published by © ODILE JACOB, Paris, 2012 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
Sudden Death and Revival of Gaussian Einstein–Podolsky–Rosen Steering
www.nature.com/npjqi ARTICLE OPEN Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels ✉ Xiaowei Deng1,2,4, Yang Liu1,2,4, Meihong Wang2,3, Xiaolong Su 2,3 and Kunchi Peng2,3 Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and excess noise on Gaussian EPR steering by distributing a two-mode squeezed state through lossy and noisy channels, respectively. We show that the impurity of state never leads to sudden death of Gaussian EPR steering, but the noise in quantum channel can. Then we revive the disappeared Gaussian EPR steering by establishing a correlated noisy channel. Different from entanglement, the sudden death and revival of Gaussian EPR steering are directional. Our result confirms that EPR steering criteria proposed by Reid and I. Kogias et al. are equivalent in our case. The presented results pave way for asymmetric quantum information processing exploiting Gaussian EPR steering in noisy environment. npj Quantum Information (2021) 7:65 ; https://doi.org/10.1038/s41534-021-00399-x INTRODUCTION teleportation30–32, securing quantum networking tasks33, and 1234567890():,; 34,35 Nonlocality, which challenges our comprehension and intuition subchannel discrimination . about the nature, is a key and distinctive feature of quantum Besides two-mode EPR steering, the multipartite EPR steering world. Three different types of nonlocal correlations: Bell has also been widely investigated since it has potential application nonlocality1, Einstein–Podolsky–Rosen (EPR) steering2–6, and in quantum network. -
Monday O. Gühne 9:00 – 9:45 Quantum Steering and the Geometry of the EPR-Argument Steering Is a Type of Quantum Correlations
Monday O. Gühne Quantum Steering and the Geometry of the EPR-Argument 9:00 – 9:45 Steering is a type of quantum correlations which lies between entanglement and the violation of Bell inequalities. In this talk, I will first give an introduction into the topic. Then, I will discuss two results on steering: First, I will show how entropic uncertainty relations can be used to derive steering criteria. Second, I will present an algorithmic approach to characterize the quantum states that can be used for steering. With this, one can decide the problem of steerability for two-qubit states. [1] A.C.S. Costa et al., arXiv:1710.04541. [2] C. Nguyen et al., arXiv:1808.09349. J.-Å. Larsson Quantum computation and the additional degrees of freedom in a physical 9:45 – 10:30 system The speed-up of Quantum Computers is the current drive of an entire scientific field with several large research programmes both in industry and academia world-wide. Many of these programmes are intended to build hardware for quantum computers. A related important goal is to understand the reason for quantum computational speed- up; to understand what resources are provided by the quantum system used in quantum computation. Some candidates for such resources include superposition and interference, entanglement, nonlocality, contextuality, and the continuity of state- space. The standard approach to these issues is to restrict quantum mechanics and characterize the resources needed to restore the advantage. Our approach is dual to that, instead extending a classical information processing systems with additional properties in the form of additional degrees of freedom, normally only present in quantum-mechanical systems. -
Quantum Computation and Complexity Theory
Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena ......... -
Analysis of Nonlinear Dynamics in a Classical Transmon Circuit
Analysis of Nonlinear Dynamics in a Classical Transmon Circuit Sasu Tuohino B. Sc. Thesis Department of Physical Sciences Theoretical Physics University of Oulu 2017 Contents 1 Introduction2 2 Classical network theory4 2.1 From electromagnetic fields to circuit elements.........4 2.2 Generalized flux and charge....................6 2.3 Node variables as degrees of freedom...............7 3 Hamiltonians for electric circuits8 3.1 LC Circuit and DC voltage source................8 3.2 Cooper-Pair Box.......................... 10 3.2.1 Josephson junction.................... 10 3.2.2 Dynamics of the Cooper-pair box............. 11 3.3 Transmon qubit.......................... 12 3.3.1 Cavity resonator...................... 12 3.3.2 Shunt capacitance CB .................. 12 3.3.3 Transmon Lagrangian................... 13 3.3.4 Matrix notation in the Legendre transformation..... 14 3.3.5 Hamiltonian of transmon................. 15 4 Classical dynamics of transmon qubit 16 4.1 Equations of motion for transmon................ 16 4.1.1 Relations with voltages.................. 17 4.1.2 Shunt resistances..................... 17 4.1.3 Linearized Josephson inductance............. 18 4.1.4 Relation with currents................... 18 4.2 Control and read-out signals................... 18 4.2.1 Transmission line model.................. 18 4.2.2 Equations of motion for coupled transmission line.... 20 4.3 Quantum notation......................... 22 5 Numerical solutions for equations of motion 23 5.1 Design parameters of the transmon................ 23 5.2 Resonance shift at nonlinear regime............... 24 6 Conclusions 27 1 Abstract The focus of this thesis is on classical dynamics of a transmon qubit. First we introduce the basic concepts of the classical circuit analysis and use this knowledge to derive the Lagrangians and Hamiltonians of an LC circuit, a Cooper-pair box, and ultimately we derive Hamiltonian for a transmon qubit. -
Approximating Ground States by Neural Network Quantum States
Article Approximating Ground States by Neural Network Quantum States Ying Yang 1,2, Chengyang Zhang 1 and Huaixin Cao 1,* 1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China; [email protected] (Y.Y.); [email protected] (C.Z.) 2 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China * Correspondence: [email protected] Received: 16 December 2018; Accepted: 16 January 2019; Published: 17 January 2019 Abstract: Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples. Keywords: approximation; ground state; neural network quantum state 1. Introduction The quantum many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of a large number of interacting particles. In such a quantum system, the repeated interactions between particles create quantum correlations [1–3], quantum entanglement [4–6], Bell nonlocality [7–9], Einstein-Poldolsky-Rosen (EPR) steering [10–12]. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes exact or analytical calculations impractical or even impossible. Thus, many-body theoretical physics most often relies on a set of approximations specific to the problem at hand, and ranks among the most computationally intensive fields of science. -
Unconditional Quantum Teleportation
R ESEARCH A RTICLES our experiment achieves Fexp 5 0.58 6 0.02 for the field emerging from Bob’s station, thus Unconditional Quantum demonstrating the nonclassical character of this experimental implementation. Teleportation To describe the infinite-dimensional states of optical fields, it is convenient to introduce a A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, pair (x, p) of continuous variables of the electric H. J. Kimble,* E. S. Polzik field, called the quadrature-phase amplitudes (QAs), that are analogous to the canonically Quantum teleportation of optical coherent states was demonstrated experi- conjugate variables of position and momentum mentally using squeezed-state entanglement. The quantum nature of the of a massive particle (15). In terms of this achieved teleportation was verified by the experimentally determined fidelity analogy, the entangled beams shared by Alice Fexp 5 0.58 6 0.02, which describes the match between input and output states. and Bob have nonlocal correlations similar to A fidelity greater than 0.5 is not possible for coherent states without the use those first described by Einstein et al.(16). The of entanglement. This is the first realization of unconditional quantum tele- requisite EPR state is efficiently generated via portation where every state entering the device is actually teleported. the nonlinear optical process of parametric down-conversion previously demonstrated in Quantum teleportation is the disembodied subsystems of infinite-dimensional systems (17). The resulting state corresponds to a transport of an unknown quantum state from where the above advantages can be put to use. squeezed two-mode optical field. -
Mathematical Languages Shape Our Understanding of Time in Physics Physics Is Formulated in Terms of Timeless, Axiomatic Mathematics
comment Corrected: Publisher Correction Mathematical languages shape our understanding of time in physics Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would ofer a perspective that is closer to our experience of physical reality. Nicolas Gisin n 1922 Albert Einstein, the physicist, met in Paris Henri Bergson, the philosopher. IThe two giants debated publicly about time and Einstein concluded with his famous statement: “There is no such thing as the time of the philosopher”. Around the same time, and equally dramatically, mathematicians were debating how to describe the continuum (Fig. 1). The famous German mathematician David Hilbert was promoting formalized mathematics, in which every real number with its infinite series of digits is a completed individual object. On the other side the Dutch mathematician, Luitzen Egbertus Jan Brouwer, was defending the view that each point on the line should be represented as a never-ending process that develops in time, a view known as intuitionistic mathematics (Box 1). Although Brouwer was backed-up by a few well-known figures, like Hermann Weyl 1 and Kurt Gödel2, Hilbert and his supporters clearly won that second debate. Hence, time was expulsed from mathematics and mathematical objects Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. came to be seen as existing in some Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; idealized Platonistic world. right: reprinted with permission from ref. 18, Springer These two debates had a huge impact on physics. -
Quantum Error Modelling and Correction in Long Distance Teleportation Using Singlet States by Joe Aung
Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2002 @ Massachusetts Institute of Technology 2002. All rights reserved. Author ................... " Department of Electrical Engineering and Computer Science May 21, 2002 72-1 14 Certified by.................. .V. ..... ..'P . .. ........ Jeffrey H. Shapiro Ju us . tn Professor of Electrical Engineering Director, Research Laboratory for Electronics Thesis Supervisor Accepted by................I................... ................... Arthur C. Smith Chairman, Department Committee on Graduate Students BARKER MASSACHUSE1TS INSTITUTE OF TECHNOLOGY JUL 3 1 2002 LIBRARIES 2 Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Under a multidisciplinary university research initiative (MURI) program, researchers at the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel- oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel ultrabright source of entangled photon pairs and trapped-atom quantum memories. This thesis will investigate the potential teleportation errors involved in the MIT/NU system. A single-photon, Bell-diagonal error model is developed that allows us to restrict possible errors to just four distinct events. The effects of these errors on teleportation, as well as their probabilities of occurrence, are determined. -
Bidirectional Quantum Controlled Teleportation by Using Five-Qubit Entangled State As a Quantum Channel
Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel Moein Sarvaghad-Moghaddam1,*, Ahmed Farouk2, Hussein Abulkasim3 to each other simultaneously. Unfortunately, the proposed Abstract— In this paper, a novel protocol is proposed for protocol required additional quantum and classical resources so implementing BQCT by using five-qubit entangled states as a that the users required two-qubit measurements and applying quantum channel which in the same time, the communicated users global unitary operations. There are many approaches and can teleport each one-qubit state to each other under permission prototypes for the exploitation of quantum principles to secure of controller. The proposed protocol depends on the Controlled- the communication between two parties and multi-parties [18, NOT operation, proper single-qubit unitary operations and single- 19, 20, 21, 22]. While these approaches used different qubit measurement in the Z-basis and X-basis. The results showed that the protocol is more efficient from the perspective such as techniques for achieving a private communication among lower shared qubits and, single qubit measurements compared to authorized users, but most of them depend on the generation of the previous work. Furthermore, the probability of obtaining secret random keys [23, 2]. In this paper, a novel protocol is Charlie’s qubit by eavesdropper is reduced, and supervisor can proposed for implementing BQCT by using five-qubit control one of the users or every two users. Also, we present a new entanglement state as a quantum channel. In this protocol, users method for transmitting n and m-qubits entangled states between may transmit an unknown one-qubit quantum state to each other Alice and Bob using proposed protocol. -
Al Transmon Qubits on Silicon-On-Insulator for Quantum Device Integration Andrew J
Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller, Paul B. Dieterle, Michael Fang, Brett Berger, Johannes M. Fink, and Oskar Painter Citation: Appl. Phys. Lett. 111, 042603 (2017); doi: 10.1063/1.4994661 View online: http://dx.doi.org/10.1063/1.4994661 View Table of Contents: http://aip.scitation.org/toc/apl/111/4 Published by the American Institute of Physics Articles you may be interested in Superconducting noise bolometer with microwave bias and readout for array applications Applied Physics Letters 111, 042601 (2017); 10.1063/1.4995981 A silicon nanowire heater and thermometer Applied Physics Letters 111, 043504 (2017); 10.1063/1.4985632 Graphitization of self-assembled monolayers using patterned nickel-copper layers Applied Physics Letters 111, 043102 (2017); 10.1063/1.4995412 Perfectly aligned shallow ensemble nitrogen-vacancy centers in (111) diamond Applied Physics Letters 111, 043103 (2017); 10.1063/1.4993160 Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures Applied Physics Letters 111, 042404 (2017); 10.1063/1.4995991 Ferromagnetism in graphene due to charge transfer from atomic Co to graphene Applied Physics Letters 111, 042402 (2017); 10.1063/1.4994814 APPLIED PHYSICS LETTERS 111, 042603 (2017) Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller,1,2 Paul B. Dieterle,1,2 Michael Fang,1,2 Brett Berger,1,2 Johannes M. Fink,1,2,3 and Oskar Painter1,2,a) 1Kavli Nanoscience Institute and Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 3Institute for Science and Technology Austria, 3400 Klosterneuburg, Austria (Received 3 April 2017; accepted 5 July 2017; published online 25 July 2017) We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. -
The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno Working Paper Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem-solving (Extended version with applications) CREMA Working Paper, No. 2021-14 Provided in Cooperation with: CREMA - Center for Research in Economics, Management and the Arts, Zürich Suggested Citation: Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno (2021) : Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem- solving (Extended version with applications), CREMA Working Paper, No. 2021-14, Center for Research in Economics, Management and the Arts (CREMA), Zürich This Version is available at: http://hdl.handle.net/10419/234629 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.