44382-023: Initial Environmental Examination

Total Page:16

File Type:pdf, Size:1020Kb

44382-023: Initial Environmental Examination Initial Environmental Examination Project No. 44382 August 2014 SOL: Broadband for Development Project (Additional Financing) Prepared by Solomon Oceanic Cable Company for the Asian Development Bank. This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Project information, including the draft and final IEE, will be made available for public review and comment as per ADB Public Communications Policy 2011. The IEE, or a summary of it, will be uploaded to ADB website and will be disclosed locally. This is an updated version of the draft originally posted in July 2012 available on {http://www.adb.org/projects/xxxxx-xxx/documents}. i CURRENCY EQUIVALENTS (as of 12 August 2014) Currency unit – Solomon Islands dollar/s (SBD) $1.00 = SBD$7.25163 SBD$1.00 = $0.13790 ABBREVIATIONS – ACMA Australian Communications and Media Authority ADB – Asian Development Bank AP – affected persons BMH – beach manhole BU – branching unit CLS – cable landing station ECD – Environmental and Conservation Division (within MECDM) EMP – environmental management plan EPBCA – Environment Protection and Biodiversity Conservation Act (in Australia) HDD – horizontal directional drilling IAIA – International Association for Impact Assessment ICT – Pacific Regional Information and Communication Technology IEE – initial environmental examination IPP – indigenous people’s plan LW – lightweight LWP – lightweight protection MECDM – Ministry of Environment, Climate Change, Disaster Management and Meteorology MID – Ministry Infrastructure Development MNES – Matters of Environmental Significance MOFT – Ministry of Finance and Treasury NGO – nongovernment organization OADM – optical add-drop multiplexer PDMC – Pacific developing member country PER – public environmental report PPC – PIPE Pacific Cable ROV – remotely operated submersible vehicle RP – resettlement plan SIA – social impact assessment SOCC – Solomon’s Oceanic Cable Company SPS – Safeguard Policy Statement (2009) STL – Solomon Telekom Limited TCSL – Telecommunications Commission of the Solomon Islands TOR – terms of reference UXO – unexploded ordnance NOTE In this report, "$" refers to US dollars. ii Contents EXECUTIVE SUMMARY iii 1. Introduction 1 1.1. Project Overview 1.2. Purpose and Objective of Initial Environmental Examination 1.3. Scope and Structure of the Initial Environmental Examination 2. IEE Methodology 4 2.1. Introduction 2.2. Overview and Approach to the IEE 2.3. Regulatory and Legislative Framework 2.4. Limitations of the Study Report 3. Description of the Solomon Islands Cable System 20 3.1. Description of proposed works 3.2. Design phase 3.3. Construction Phase – Cable Placement Methods 3.4. Operation Phase 3.5. Alternatives Considered 37 4. Description of the Environment 4.1. Location, Setting and Review of Existing Information 4.2. Physical Environment 4.3. Biological Environment 4.4. Natural Hazards 5. Assessment of Potential Environmental Impacts 57 5.1. General 5.2. Physical Environment 5.3. Biological Environment 5.4. Natural Hazards 5.5. Additional Potential Impacts 6. Environmental Management Plan 63 6.1. General 6.2. Institutional Assessment to Undertake Impact Management 6.3. Grievance Management Procedure 6.4. Environmental Management Plan 6.5. Monitoring and Reporting Mechanisms 6.6. Equator Principles 6.7. Conclusions and Recommendations iii Executive Summary 1. Background. Under the Pacific Regional Information and Communication Technology (ICT) Connectivity Project, the government of the Solomon Islands is seeking assistance through Asian Development Bank (ADB) to part finance the Solomon Islands Broadband for Development Project (the project). Part of this support is required for the construction of the international submarine cable system that will link to an existing regional cable, and two domestic spurs within the Solomon Islands. 2. The project was approved by the ADB Board on 25 September 2012. The assumption was that the international cable would connect to the Pipe Pacific Cable 1 (PPC1) which was laid between Sydney and Guam in 2009. The project’s primary plan was to connect to the existing PPC1 at the closest point of approach to the Solomon Islands, which was identified as a beach landing site approximately 2km west of the center of Honiara. The project experienced significant delays in finalizing international connectivity arrangements due to difficulty negotiating with PIPE Networks. The alternative option to connect via existing Branching Unit 3 on PPC-1 (near Port Moresby) connecting the Solomon Islands to the submarine cable network in partnership with Independent Public Business Corporation of Papua New Guinea also did not materialize due to lack of response from PIPE Networks in carrying forward this option. 3. The proposed additional financing project. The preferred option now, for international connectivity, is to build a cable directly between Sydney and Honiara. The landing point of the international cable on Honiara is changed to a new location, a site owned by a SOCC shareholder, Solomon Islands National Provident Fund. There are no substantive changes to the previously selected routes and landing points for the domestic cable systems. In light of the new international cable route, the existing safeguards and social assessments need to be updated to identify and assess any additional environmental and social issues according to the requirements of ADB’s Safeguard Policy Statement 2009 (SPS). 4. The cable system will comprise an international cable from Sydney, Australia to Honiara, Solomon Islands and two domestic spurs from Honiara to Noro (Western Province) and Auki (Malaita Province). The international cable is proposed to originate from Sydney and be delivered directly to Honiara at an identified beach landing site approximately 0.5 km from the central telecommunication building. Domestic distribution will be via a single cable departing Honiara to be split into two separate cables, one to Western Province, and one to Malaita. The cable to Western Province will terminate in Noro on New Georgia Island, approximately 400 km from its departure point from Honiara. The cable to Malaita will land in Auki, running approximately 140 km from Honiara. 5. Policy, Legal and Administrative Framework. The project shall comply with requirements of the Environment Act 1998 and the Environment Regulations 2008 which require that for prescribed activities, a development consent must be obtained from the Ministry of Environment Climate Change and Disaster Management. A development consent application must include an environmental assessment which complies with Environment Act and Environment Regulations requirements. iv 6. The project will also comply with the requirements of the SPS. Government environmental clearance and development consent (and other permits) must be obtained before any works commence. 7. The most significant change associated with this project is the environmental requirements for the cable to connect to Sydney, Australia. With the exception of identifying, on a preliminary basis, the laws and requirements that will apply, the Australian landing site aspect of the potential project is not covered under this study (this will be Solomon’s Oceanic Cable Company responsibility and will be completed when the third party (service provider in Australia) is determined). 8. Safeguards due diligence. This report has been prepared to update the initial environmental examination (IEE) prepared in 2012 to provide additional environmental information pertaining to the changes made to the proposed delivery of a submarine telecommunication cable (international and domestic) to the Solomon Islands. The basis of this report is the approved IEE and the original information and format have been retained and supplemented where necessary. Specific changes relate to the environmental procedures required for a new international cable to be sourced directly from Sydney, Australia to the Solomon Islands and the inclusion of marine and coastal environmental profile assessments to address minor location changes to the three domestic landing sites (Honiara, Noro and Auki). This report should also be read in conjunction with the updated social assessment and the resettlement plan. 9. Categorization The subproject is classified as Category B in accordance with ADB's SPS, as the project’s potential adverse environmental impacts are site-specific, few if any of them are irreversible, and in most cases mitigation measures can be designed readily. The IEE was carried out in July and August 2014 and results of this IEE and the environmental management plan (EMP) will be updated as required following survey and detailed design. 10. Anticipated environmental impacts. The project will impact a corridor about 0.3-0.5 m wide on the sea floor, and in some locations up to 0.75 m beneath the sediment. The cable, 2- 5cmm in diameter, will be either sitting on the floor of deep ocean or buried as it passes through the natural marine environment of the Solomon
Recommended publications
  • State of the Coral Triangle: Solomon Islands
    State of the Coral Triangle: Solomon Islands One of a series of six reports on the status of marine resources in the western Pacific Ocean, the State of the Coral Triangle: Solomon Islands describes the biophysical characteristics of Solomon Islands’ coastal and marine ecosystems, the manner in which they are being exploited, the framework in place that governs their use, the socioeconomic characteristics of the communities that use them, and the environmental threats posed by the manner in which STATE OF THE CORAL TRIANGLE: they are being used. It explains the country’s national plan of action to address these threats and improve marine resource management. Solomon Islands About the Asian Development Bank ADB’s vision is an Asia and Pacific region free of poverty. Its mission is to help its developing member countries reduce poverty and improve the quality of life of their people. Despite the region’s many successes, it remains home to approximately two-thirds of the world’s poor: 1.6 billion people who live on less than $2 a day, with 733 million struggling on less than $1.25 a day. ADB is committed to reducing poverty through inclusive economic growth, environmentally sustainable growth, and regional integration. Based in Manila, ADB is owned by 67 members, including 48 from the region. Its main instruments for helping its developing member countries are policy dialogue, loans, equity investments, guarantees, grants, and technical assistance. Asian Development Bank 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines www.adb.org Printed on recycled paper Printed in the Philippines STATE OF THE CORAL TRIANGLE: Solomon Islands © 2014 Asian Development Bank All rights reserved.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Articles Ranging in Resents Both Gravitational Acceleration and the Effect of Bed Size from Tens of Meters to a Few Centimeters in Diameter
    Nat. Hazards Earth Syst. Sci., 6, 671–685, 2006 www.nat-hazards-earth-syst-sci.net/6/671/2006/ Natural Hazards © Author(s) 2006. This work is licensed and Earth under a Creative Commons License. System Sciences Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska C. F. Waythomas1, P. Watts2, and J. S. Walder3 1U.S. Geological Survey, Alaska Volcano Observatory, Anchorage, AK, USA 2Applied Fluids Engineering Inc., Long Beach, CA, USA 3U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, USA Received: 18 April 2006 – Revised: 22 June 2006 – Accepted: 22 June 2006 – Published: 26 July 2006 Abstract. Many of the world’s active volcanoes are situated 1 Introduction on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, Many of the world’s active volcanoes are located within a and lahars, can deliver large volumes of unconsolidated de- few tens of kilometers of the sea or other large bodies of wa- bris to the ocean in a short period of time and thereby gen- ter. During eruptions, large volumes of volcaniclastic debris erate tsunamis. Deposits of both hot and cold volcanic mass may enter nearby water bodies, and under certain conditions, flows produced by eruptions of Aleutian arc volcanoes are this process may initiate tsunamis (Tinti et al., 1999; Tinti exposed at many locations along the coastlines of the Bering et al., 2003). Worldwide, tsunamis caused by volcanic erup- Sea, North Pacific Ocean, and Cook Inlet, indicating that tions are somewhat infrequent (Latter, 1981); however, doc- the flows entered the sea and in some cases may have ini- umented historical cases illustrate that loss of life and prop- tiated tsunamis.
    [Show full text]
  • Human-Crocodile Conflict in Solomon Islands
    Human-crocodile conflict in Solomon Islands In partnership with Human-crocodile conflict in Solomon Islands Authors Jan van der Ploeg, Francis Ratu, Judah Viravira, Matthew Brien, Christina Wood, Melvin Zama, Chelcia Gomese and Josef Hurutarau. Citation This publication should be cited as: Van der Ploeg J, Ratu F, Viravira J, Brien M, Wood C, Zama M, Gomese C and Hurutarau J. 2019. Human-crocodile conflict in Solomon Islands. Penang, Malaysia: WorldFish. Program Report: 2019-02. Photo credits Front cover, Eddie Meke; page 5, 11, 20, 21 and 24 Jan van der Ploeg/WorldFish; page 7 and 12, Christina Wood/ WorldFish; page 9, Solomon Star; page 10, Tessa Minter/Leiden University; page 22, Tingo Leve/WWF; page 23, Brian Taupiri/Solomon Islands Broadcasting Corporation. Acknowledgments This survey was made possible through the Asian Development Bank’s technical assistance on strengthening coastal and marine resources management in the Pacific (TA 7753). We are grateful for the support of Thomas Gloerfelt-Tarp, Hanna Uusimaa, Ferdinand Reclamado and Haezel Barber. The Ministry of Environment, Climate Change, Disaster Management and Meteorology (MECDM) initiated the survey. We specifically would like to thank Agnetha Vave-Karamui, Trevor Maeda and Ezekiel Leghunau. We also acknowledge the support of the Ministry of Fisheries and Marine Resources (MFMR), particularly Rosalie Masu, Anna Schwarz, Peter Rex Lausu’u, Stephen Mosese, and provincial fisheries officers Peter Bade (Makira), Thompson Miabule (Choiseul), Frazer Kavali (Isabel), Matthew Isihanua (Malaita), Simeon Baeto (Western Province), Talent Kaepaza and Malachi Tefetia (Central Province). The Royal Solomon Islands Police Force shared information on their crocodile destruction operations and participated in the workshops of the project.
    [Show full text]
  • Human-Wildlife Conflict in Africa
    ISSN 0258-6150 157 FAO FORESTRY PAPER 157 Human-wildlife conflict in Africa Causes, consequences Human-wildlife conflict in Africa – Causes, consequences and management strategies and management strategies FAO FAO Cover image: The crocodile is the animal responsible for the most human deaths in Africa Fondation IGF/N. Drunet (children bathing); D. Edderai (crocodile) FAO FORESTRY Human-wildlife PAPER conflict in Africa 157 Causes, consequences and management strategies F. Lamarque International Foundation for the Conservation of Wildlife (Fondation IGF) J. Anderson International Conservation Service (ICS) R. Fergusson Crocodile Conservation and Consulting M. Lagrange African Wildlife Management and Conservation (AWMC) Y. Osei-Owusu Conservation International L. Bakker World Wide Fund for Nature (WWF)–The Netherlands FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2009 5IFEFTJHOBUJPOTFNQMPZFEBOEUIFQSFTFOUBUJPOPGNBUFSJBMJOUIJTJOGPSNBUJPO QSPEVDUEPOPUJNQMZUIFFYQSFTTJPOPGBOZPQJOJPOXIBUTPFWFSPOUIFQBSU PGUIF'PPEBOE"HSJDVMUVSF0SHBOJ[BUJPOPGUIF6OJUFE/BUJPOT '"0 DPODFSOJOHUIF MFHBMPSEFWFMPQNFOUTUBUVTPGBOZDPVOUSZ UFSSJUPSZ DJUZPSBSFBPSPGJUTBVUIPSJUJFT PSDPODFSOJOHUIFEFMJNJUBUJPOPGJUTGSPOUJFSTPSCPVOEBSJFT5IFNFOUJPOPGTQFDJGJD DPNQBOJFTPSQSPEVDUTPGNBOVGBDUVSFST XIFUIFSPSOPUUIFTFIBWFCFFOQBUFOUFE EPFT OPUJNQMZUIBUUIFTFIBWFCFFOFOEPSTFEPSSFDPNNFOEFECZ'"0JOQSFGFSFODFUP PUIFSTPGBTJNJMBSOBUVSFUIBUBSFOPUNFOUJPOFE *4#/ "MMSJHIUTSFTFSWFE3FQSPEVDUJPOBOEEJTTFNJOBUJPOPGNBUFSJBMJOUIJTJOGPSNBUJPO QSPEVDUGPSFEVDBUJPOBMPSPUIFSOPODPNNFSDJBMQVSQPTFTBSFBVUIPSJ[FEXJUIPVU
    [Show full text]
  • Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected]
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2007 Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected] Haraldur Sigurdsson University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Carey, S., and H. Sigurdsson. 2007. Exploring submarine arc volcanoes. Oceanography 20(4):80–89, https://doi.org/10.5670/ oceanog.2007.08. Available at: https://doi.org/10.5670/oceanog.2007.08 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution SP ec I A L Iss U E On Ocean E X P L O R ATIO N Oceanography , Volume 20, Number 4, a quarterly journal of The 20, Number 4, a quarterly , Volume O ceanography Society. Copyright 2007 by The 2007 by Copyright Society. ceanography Exploring O ceanography Society. All rights All reserved. Society. ceanography O Submarine Arc Volcanoes or Th e [email protected] Send Society. ceanography to: correspondence all B Y S T even C A R E Y an D H A R A LDUR SIGURD ss O N Three quarters of Earth’s volcanic activ- although a significant part of arc volca- tion of tsunamis (Latter, 1981).
    [Show full text]
  • Active Continental Margin
    Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig.
    [Show full text]
  • The Naturalist and His 'Beautiful Islands'
    The Naturalist and his ‘Beautiful Islands’ Charles Morris Woodford in the Western Pacific David Russell Lawrence The Naturalist and his ‘Beautiful Islands’ Charles Morris Woodford in the Western Pacific David Russell Lawrence Published by ANU Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Author: Lawrence, David (David Russell), author. Title: The naturalist and his ‘beautiful islands’ : Charles Morris Woodford in the Western Pacific / David Russell Lawrence. ISBN: 9781925022032 (paperback) 9781925022025 (ebook) Subjects: Woodford, C. M., 1852-1927. Great Britain. Colonial Office--Officials and employees--Biography. Ethnology--Solomon Islands. Natural history--Solomon Islands. Colonial administrators--Solomon Islands--Biography. Solomon Islands--Description and travel. Dewey Number: 577.099593 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover image: Woodford and men at Aola on return from Natalava (PMBPhoto56-021; Woodford 1890: 144). Cover design and layout by ANU Press Printed by Griffin Press This edition © 2014 ANU Press Contents Acknowledgments . xi Note on the text . xiii Introduction . 1 1 . Charles Morris Woodford: Early life and education . 9 2. Pacific journeys . 25 3 . Commerce, trade and labour . 35 4 . A naturalist in the Solomon Islands . 63 5 . Liberalism, Imperialism and colonial expansion . 139 6 . The British Solomon Islands Protectorate: Colonialism without capital . 169 7 . Expansion of the Protectorate 1898–1900 .
    [Show full text]
  • Species-Edition-Melanesian-Geo.Pdf
    Nature Melanesian www.melanesiangeo.com Geo Tranquility 6 14 18 24 34 66 72 74 82 6 Herping the final frontier 42 Seahabitats and dugongs in the Lau Lagoon 10 Community-based response to protecting biodiversity in East 46 Herping the sunset islands Kwaio, Solomon Islands 50 Freshwater secrets Ocean 14 Leatherback turtle community monitoring 54 Freshwater hidden treasures 18 Monkey-faced bats and flying foxes 58 Choiseul Island: A biogeographic in the Western Solomon Islands stepping-stone for reptiles and amphibians of the Solomon Islands 22 The diversity and resilience of flying foxes to logging 64 Conservation Development 24 Feasibility studies for conserving 66 Chasing clouds Santa Cruz Ground-dove 72 Tetepare’s turtle rodeo and their 26 Network Building: Building a conservation effort network to meet local and national development aspirations in 74 Secrets of Tetepare Culture Western Province 76 Understanding plant & kastom 28 Local rangers undergo legal knowledge on Tetepare training 78 Grassroots approach to Marine 30 Propagation techniques for Tubi Management 34 Phantoms of the forest 82 Conservation in Solomon Islands: acts without actions 38 Choiseul Island: Protecting Mt Cover page The newly discovered Vangunu Maetambe to Kolombangara River Island endemic rat, Uromys vika. Image watershed credit: Velizar Simeonovski, Field Museum. wildernesssolomons.com WWW.MELANESIANGEO.COM | 3 Melanesian EDITORS NOTE Geo PRODUCTION TEAM Government Of Founder/Editor: Patrick Pikacha of the priority species listed in the Critical Ecosystem [email protected] Solomon Islands Hails Partnership Fund’s investment strategy for the East Assistant editor: Tamara Osborne Melanesian Islands. [email protected] Barana Community The Critical Ecosystem Partnership Fund (CEPF) Contributing editor: David Boseto [email protected] is designed to safeguard Earth’s most biologically rich Prepress layout: Patrick Pikacha Nature Park Initiative and threatened regions, known as biodiversity hotspots.
    [Show full text]
  • The Eye of the Crocodile
    The Eye of the Crocodile The Eye of the Crocodile Val Plumwood Edited by Lorraine Shannon Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at http://epress.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Author: Plumwood, Val. Title: The Eye of the crocodile / Val Plumwood ; edited by Lorraine Shannon. ISBN: 9781922144164 (pbk.) 9781922144171 (ebook) Notes Includes bibliographical references and index. Subjects: Predation (Biology) Philosophy of nature. Other Authors/Contributors: Shannon, Lorraine. Dewey Number: 591.53 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU E Press Cover image supplied by Mary Montague of Montague Leong Designs Pty Ltd. http://www.montagueleong.com.au Printed by Griffin Press This edition © 2012 ANU E Press Contents Acknowledgements . vii Preface . ix Introduction . 1 Freya Mathews, Kate Rigby, Deborah Rose First section 1 . Meeting the predator . 9 2 . Dry season (Yegge) in the stone country . 23 3 . The wisdom of the balanced rock: The parallel universe and the prey perspective . 35 Second section 4 . A wombat wake: In memoriam Birubi . 49 5 . ‘Babe’: The tale of the speaking meat . 55 Third section 6 . Animals and ecology: Towards a better integration . 77 7 . Tasteless: Towards a food-based approach to death . 91 Works cited . 97 v Acknowledgements The editor wishes to thank the following for permission to use previously published material: A version of Chapter One was published as ‘Being Prey’ in Terra Nova, Vol.
    [Show full text]
  • Oral and Cloacal Microflora of Wild Crocodiles Crocodylus Acutus and C
    Vol. 98: 27–39, 2012 DISEASES OF AQUATIC ORGANISMS Published February 17 doi: 10.3354/dao02418 Dis Aquat Org Oral and cloacal microflora of wild crocodiles Crocodylus acutus and C. moreletii in the Mexican Caribbean Pierre Charruau1,*, Jonathan Pérez-Flores2, José G. Pérez-Juárez2, J. Rogelio Cedeño-Vázquez3, Rebeca Rosas-Carmona3 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico 2Departamento de Salud y Bienestar Animal, Africam Safari Zoo, Puebla, Puebla 72960, Mexico 3Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Chetumal, Chetumal, Quintana Roo 77013, Mexico ABSTRACT: Bacterial cultures and chemical analyses were performed from cloacal and oral swabs taken from 43 American crocodiles Crocodylus acutus and 28 Morelet’s crocodiles C. moreletii captured in Quintana Roo State, Mexico. We recovered 47 bacterial species (28 genera and 14 families) from all samples with 51.1% of these belonging to the family Enterobacteriaceae. Fourteen species (29.8%) were detected in both crocodile species and 18 (38.3%) and 15 (31.9%) species were only detected in American and Morelet’s crocodiles, respectively. We recovered 35 bacterial species from all oral samples, of which 9 (25.8%) were detected in both crocodile species. From all cloacal samples, we recovered 21 bacterial species, of which 8 (38.1%) were detected in both crocodile species. The most commonly isolated bacteria in cloacal samples were Aeromonas hydrophila and Escherichia coli, whereas in oral samples the most common bacteria were A. hydrophila and Arcanobacterium pyogenes. The bacteria isolated represent a potential threat to crocodile health during conditions of stress and a threat to human health through crocodile bites, crocodile meat consumption or carrying out activities in crocodile habitat.
    [Show full text]
  • The Historical Ecology of Queensland's Australian Saltwater
    Colby College Digital Commons @ Colby Honors Theses Student Research 2016 The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus) Emily M. Walker Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Animal Studies Commons, and the Environmental Studies Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Walker, Emily M., "The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus)" (2016). Honors Theses. Paper 815. https://digitalcommons.colby.edu/honorstheses/815 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus) Emily Walker Environmental Studies Program Colby College Waterville, Maine May 6, 2016 A thesis submitted to the faculty of the Environmental Studies Program in partial fulfillment of the graduation requirements for the Degree of Bachelor of Arts with honors in Environmental Studies __________________ __________________ __________________ Loren McClenachan, Advisor Manuel Gimond, Reader Philip Nyhus, Reader Copyright © 2016 by the Environmental Studies Program, Colby College. All rights reserved. ABSTRACT Human wildlife conflict is a critical aspect of many societies, as it often plays a large role in government decisions. The iconic saltwater Australian crocodile (Crocodylus porosus) is one example of a species that has become the subject of human-wildlife conflict in Queensland, Australia.
    [Show full text]