Archean Subduction Or Not? Evidence from Volcanic Geochemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Articles Ranging in Resents Both Gravitational Acceleration and the Effect of Bed Size from Tens of Meters to a Few Centimeters in Diameter
Nat. Hazards Earth Syst. Sci., 6, 671–685, 2006 www.nat-hazards-earth-syst-sci.net/6/671/2006/ Natural Hazards © Author(s) 2006. This work is licensed and Earth under a Creative Commons License. System Sciences Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska C. F. Waythomas1, P. Watts2, and J. S. Walder3 1U.S. Geological Survey, Alaska Volcano Observatory, Anchorage, AK, USA 2Applied Fluids Engineering Inc., Long Beach, CA, USA 3U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, USA Received: 18 April 2006 – Revised: 22 June 2006 – Accepted: 22 June 2006 – Published: 26 July 2006 Abstract. Many of the world’s active volcanoes are situated 1 Introduction on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, Many of the world’s active volcanoes are located within a and lahars, can deliver large volumes of unconsolidated de- few tens of kilometers of the sea or other large bodies of wa- bris to the ocean in a short period of time and thereby gen- ter. During eruptions, large volumes of volcaniclastic debris erate tsunamis. Deposits of both hot and cold volcanic mass may enter nearby water bodies, and under certain conditions, flows produced by eruptions of Aleutian arc volcanoes are this process may initiate tsunamis (Tinti et al., 1999; Tinti exposed at many locations along the coastlines of the Bering et al., 2003). Worldwide, tsunamis caused by volcanic erup- Sea, North Pacific Ocean, and Cook Inlet, indicating that tions are somewhat infrequent (Latter, 1981); however, doc- the flows entered the sea and in some cases may have ini- umented historical cases illustrate that loss of life and prop- tiated tsunamis. -
Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected]
University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2007 Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected] Haraldur Sigurdsson University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Carey, S., and H. Sigurdsson. 2007. Exploring submarine arc volcanoes. Oceanography 20(4):80–89, https://doi.org/10.5670/ oceanog.2007.08. Available at: https://doi.org/10.5670/oceanog.2007.08 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution SP ec I A L Iss U E On Ocean E X P L O R ATIO N Oceanography , Volume 20, Number 4, a quarterly journal of The 20, Number 4, a quarterly , Volume O ceanography Society. Copyright 2007 by The 2007 by Copyright Society. ceanography Exploring O ceanography Society. All rights All reserved. Society. ceanography O Submarine Arc Volcanoes or Th e [email protected] Send Society. ceanography to: correspondence all B Y S T even C A R E Y an D H A R A LDUR SIGURD ss O N Three quarters of Earth’s volcanic activ- although a significant part of arc volca- tion of tsunamis (Latter, 1981). -
Active Continental Margin
Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig. -
Convective Isolation of Hadean Mantle Reservoirs Through Archean Time
Convective isolation of Hadean mantle reservoirs through Archean time Jonas Tuscha,1, Carsten Münkera, Eric Hasenstaba, Mike Jansena, Chris S. Mariena, Florian Kurzweila, Martin J. Van Kranendonkb,c, Hugh Smithiesd, Wolfgang Maiere, and Dieter Garbe-Schönbergf aInstitut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany; bSchool of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW 2052, Australia; cAustralian Center for Astrobiology, The University of New South Wales, Kensington, NSW 2052, Australia; dDepartment of Mines, Industry Regulations and Safety, Geological Survey of Western Australia, East Perth, WA 6004, Australia; eSchool of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, United Kingdom; and fInstitut für Geowissenschaften, Universität zu Kiel, 24118 Kiel, Germany Edited by Richard W. Carlson, Carnegie Institution for Science, Washington, DC, and approved November 18, 2020 (received for review June 19, 2020) Although Earth has a convecting mantle, ancient mantle reservoirs anomalies in Eoarchean rocks was interpreted as evidence that that formed within the first 100 Ma of Earth’s history (Hadean these rocks lacked a late veneer component (5). Conversely, the Eon) appear to have been preserved through geologic time. Evi- presence of some late accreted material is required to explain the dence for this is based on small anomalies of isotopes such as elevated abundances of highly siderophile elements (HSEs) in 182W, 142Nd, and 129Xe that are decay products of short-lived nu- Earth’s modern silicate mantle (9). Notably, some Archean rocks clide systems. Studies of such short-lived isotopes have typically with apparent pre-late veneer like 182W isotope excesses were focused on geological units with a limited age range and therefore shown to display HSE concentrations that are indistinguishable only provide snapshots of regional mantle heterogeneities. -
The World Turns Over: Hadean–Archean Crust–Mantle Evolution
Lithos 189 (2014) 2–15 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Review paper The world turns over: Hadean–Archean crust–mantle evolution W.L. Griffin a,⁎, E.A. Belousova a,C.O'Neilla, Suzanne Y. O'Reilly a,V.Malkovetsa,b,N.J.Pearsona, S. Spetsius a,c,S.A.Wilded a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Dept. Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia b VS Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia c Scientific Investigation Geology Enterprise, ALROSA Co Ltd, Mirny, Russia d ARC Centre of Excellence for Core to Crust Fluid Systems, Dept of Applied Geology, Curtin University, G.P.O. Box U1987, Perth 6845, WA, Australia article info abstract Article history: We integrate an updated worldwide compilation of U/Pb, Hf-isotope and trace-element data on zircon, and Re–Os Received 13 April 2013 model ages on sulfides and alloys in mantle-derived rocks and xenocrysts, to examine patterns of crustal evolution Accepted 19 August 2013 and crust–mantle interaction from 4.5 Ga to 2.4 Ga ago. The data suggest that during the period from 4.5 Ga to ca Available online 3 September 2013 3.4 Ga, Earth's crust was essentially stagnant and dominantly maficincomposition.Zirconcrystallizedmainly from intermediate melts, probably generated both by magmatic differentiation and by impact melting. This quies- Keywords: – Archean cent state was broken by pulses of juvenile magmatic activity at ca 4.2 Ga, 3.8 Ga and 3.3 3.4 Ga, which may Hadean represent mantle overturns or plume episodes. -
The Archean Geology of Montana
THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga. -
Implications for Global-Scale Plate Tectonics Hamed Gamal El Dien1,2 ✉ , Luc S
www.nature.com/scientificreports OPEN Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics Hamed Gamal El Dien1,2 ✉ , Luc S. Doucet1, J. Brendan Murphy1,3 & Zheng-Xiang Li1 Progressive mantle melting during the Earth’s earliest evolution led to the formation of a depleted mantle and a continental crust enriched in highly incompatible elements. Re-enrichment of Earth’s mantle can occur when continental crustal materials begin to founder into the mantle by either subduction or, to a lesser degree, by delamination processes, profoundly afecting the mantle’s trace element and volatile compositions. Deciphering when mantle re-enrichment/refertilization became a global-scale process would reveal the onset of efcient mass transfer of crust to the mantle and potentially when plate tectonic processes became operative on a global-scale. Here we document the onset of mantle re-enrichment/refertilization by comparing the abundances of petrogenetically signifcant isotopic values and key ratios of highly incompatible elements compared to lithophile elements in Archean to Early-Proterozoic mantle-derived melts (i.e., basalts and komatiites). Basalts and komatiites both record a rapid-change in mantle chemistry around 3.2 billion years ago (Ga) signifying a fundamental change in Earth geodynamics. This rapid-change is recorded in Nd isotopes and in key trace element ratios that refect a fundamental shift in the balance between fuid-mobile and incompatible elements (i.e., Ba/La, Ba/Nb, U/Nb, Pb/Nd and Pb/Ce) in basaltic and komatiitic rocks. These geochemical proxies display a signifcant increase in magnitude and variability after ~3.2 Ga. -
Origin of Archean Subcontinental Lithospheric Mantle: Some Petrological Constraints
Lithos 109 (2009) 61–71 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Origin of Archean subcontinental lithospheric mantle: Some petrological constraints N.T. Arndt a,⁎, N. Coltice b, H. Helmstaedt c, M. Gregoire d a LGCA, UMR 5025 CNRS, Université de Grenoble, 1381 rue de la Piscine, 38401 Grenoble, France b Laboratoire de Sciences de la Terre, Université de Lyon, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS, 2 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France c Department of Geological Sciences, Queen's University, Kingston, Canada d Observatoire Midi-Pyrenées, Université de Toulouse 4 Ave. E. Belin 31400, Toulouse, France article info abstract Article history: The longevity of the continental lithosphere mantle is explained by its unusual composition. This part of the Received 9 June 2008 mantle is made up mainly of forsterite-rich olivine (Fo92–94), with or without orthopyroxene, and it is Accepted 17 October 2008 essentially anhydrous. The former characteristic makes it buoyant, the latter makes it viscous, and the Available online 5 November 2008 combination of these features that allow it to remain isolated from the convecting mantle. Highly forsteritic olivine is not normally produced during mantle melting. Possible explanations for its abundance in old Keywords: Archean subcontinental lithospheric mantle include: (a) high-degree mantle melting in a plume or at an Mantle Lithosphere Archean ocean ridge; (b) accretion of this material to older lithosphere and its reworking in a subduction Olivine zone; (c) redistribution of material to eliminate high-density, low-viscosity lithologies. Following an Archean evaluation of these models based on petrological and numerical modeling, we conclude that the most likely explanation is the accumulation of the residues of melting of one or more mantle plumes following by gravity-driven ejection of denser, Fe-rich components. -
Subduction Zones
AccessScience from McGraw-Hill Education Page 1 of 11 www.accessscience.com Subduction zones Contributed by: R. J. Stern, S. H. Bloomer Publication year: 2019 Regions where portions of the Earth’s tectonic plates sink beneath other plates, into the Earth’s interior. Subduction zones are defined by deep oceanic trenches, lines of volcanoes parallel to the trenches and zones of large earthquakes that extend from the trenches landward. Plate tectonic theory recognizes that the Earth’s solid surface is composed of a mosaic of interacting lithospheric plates, with the lithosphere consisting of the crust (continental or oceanic) and associated underlying mantle, for a total thickness that varies with age but that is typically about 100 km (60 mi). Oceanic lithosphere is created by seafloor spreading at mid-ocean ridges (divergent, or accretionary, plate boundaries) and destroyed at subduction zones (at convergent, or destructive, plate boundaries). At subduction zones, the oceanic lithosphere dives beneath another plate, which may be either oceanic or continental. Part of the material on the subducted plate is recycled back to the surface (by being scraped off the subducting plate and accreted to the overriding plate, or by melting and rising as magma) and the remainder is mixed back into the Earth’s deeper mantle. This process balances the creation of lithosphere that occurs at the mid-ocean ridge system. The convergence of two plates occurs at rates of 1–10 cm∕yr (0.4–4 in.∕yr) or 10–100 km (6–60 mi) per million years (Fig. 1). During subduction, stress and phase changes in the upper part of the cold descending plate produce earthquakes in the upper portion of the plate, in a narrow band called the Wadati-Benioff zone (named after the Japanese and U.S. -
Geochemistry and Geochronology of Tethyan-Arc Related Igneous Rocks, NE Iraq Sarmad Asi Ali University of Wollongong
University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Geochemistry and geochronology of Tethyan-arc related igneous rocks, NE Iraq Sarmad Asi Ali University of Wollongong Recommended Citation Ali, Sarmad Asi, Geochemistry and geochronology of Tethyan-arc related igneous rocks, NE Iraq, Doctor of Philosophy thesis, School of Earth and Environmental Sciences, University of Wollongong, 2012. http://ro.uow.edu.au/theses/3478 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Geochemistry and geochronology of Tethyan-arc related igneous rocks, NE Iraq A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by SARMAD ASI ALI Master of Science School of Earth and Environmental Sciences 2012 CERTIFICATION I, Sarmad A. Ali, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Sarmad Asi Ali January 2012. ﺑِ ﺴۡ ﻢِ ٱ ﷲِ ٱ ﻟ ﺮﱠ ﺣۡ ﻤَ ـٰ ﻦِ ٱ ﻟ ﺮﱠ ﺣِ ﻴ ﻢِ ﻭَ ﺗَ ﺮَ ﻯ ٱ ﻟۡ ﺠِ ﺒَ ﺎ ﻝَ ﺗَ ﺤۡ ﺴَ ﺒُ ﮩَ ﺎ ﺟَ ﺎ ﻣِ ﺪَ ﺓ ً۬ ﻭَ ﻫِ ﻰَ ﺗَ ﻤُ ﺮﱡ ﻣَ ﺮﱠ ٱ ﻟ ﺴﱠ ﺤَ ﺎ ﺏِ ۚ ﺻُ ﻨۡ ﻊَ ٱ ﻟ ﻠﱠ ﻪِ ٱ ﻟﱠ ﺬِ ﻯٓ ﺃﺗﻘﻦ ﻛُ ﻞﱠ ﺷَ ﻰۡ ءٍ ۚ ﺇِ ﻧﱠ ﻪُ ۥ ﺧَ ﺒِ ﻴ ﺮ ُۢ ﺑِ ﻤَ ﺎ ﺗَ ﻔۡ ﻌَ ﻠُ ﻮ ﻥَ (٨٨) ﺻﺪﻕ ﺍﷲ ﺍﻟﻌﻈﻴﻢ In the name of Allah, the Beneficent, the Merciful And thou seest the hills thou deemest solid flying with the flight of clouds: the doing of Allah Who perfecteth all things. -
19860010298.Pdf
o ARCHEAN FORELAND BASIN TECTONICS IN THE WITWATERSRAND, SOUTH AFRICA Kevin Burke Lunar and Planetary Institute 3303 NASA Road One MAR1986 Houston, Texas 77058 BEOIMEB W.S.F. Kidd and T.M. Kusky Department of Geological Sciences State University of New York at Albany 1400 Washington Avenue Albany, New York 12222 JNAS&-CR-176561) ARCHBAN FORELAND BASIN N86-19769 TECTONICS IN THE HITiATEHSBASE, SOOTH AFRICA (Luuar and Planetary lust.) 62 p HC AOV«F A01 CSC1 08G Onclas G3/46 04607 o o Page 2 f ABSTRACT The Witwatersrand Basin of j>r South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. We suggest that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province.