Disruptive Technology Meets the Intractable Challenge of Fugitive Gas Emissions

Total Page:16

File Type:pdf, Size:1020Kb

Disruptive Technology Meets the Intractable Challenge of Fugitive Gas Emissions Sustainability: Technical solutions, practical actions. Disruptive technology meets the intractable challenge of fugitive gas emissions www.advisian.com Sustainability: Technical solutions, practical actions. Author: Laith Amin Senior Vice President Digital Enterprise Houston 1 | Advisian Disruptive technology meets the intractable challenge of fugitive-gas emissions Optical gas imaging makes gas clouds visible In 2016, regulatory authorities in North America started taking seriously the fact that methane is a very powerful greenhouse gas in its raw, or unburnt, form. They also took note that recent advances in thermal imaging technology had lent credence to the assertion that fugitive emissions, or unintentional gas leaks, are happening on a much greater scale than ever before. Combined with an unprecedented expansion in U.S. onshore extraction and processing of natural gas, a basis for a perfect storm exists. An estimated $2 billion of natural gas is lost each year to leaks. The idea of natural gas as a clean fuel that can contribute to a reduction in urban pollution and greenhouse gas emissions is well-accepted both within the oil & gas industry and beyond. Even the most prominent voices advocating for non- fossil-fuel renewable technology, including Greenpeace, publicly have accepted the important role natural gas plays in acting as a clean fuel stepping stone from energy based on coal or oil toward energy less reliant on fossil fuels. This strategy of expanded exploitation of natural gas is working, and globally so. For example, on April 21, 2017 the UK enjoyed its first 24 hour power generation period completely free of coal since the year 1880. In the U.S., natural gas has surpassed coal as the nation’s leading power generating fuel source, with its growth rate surpassing any other energy source for power generation. Advisian | 2 Sustainability: Technical solutions, practical actions. Reasons for Methods of uncertainty measurement Climate change commitments have been made by many But why do these estimates vary so widely? To answer western, economically developed countries. Gas is a this question, it is essential to also examine the ‘method key weapon in the fight against CO2 emissions. In Asia, of measurement’ itself — and there are several different growing unease about air quality in post-industrial China methods used. has led to some impressive deals with natural gas supply One method to estimate leak emissions rates from countries such as Russia and Australia, but it is also this equipment items having the potential to leak in any plant very supply chain that sometimes calls into question the environment is simply to apply emissions factors and greenhouse gas reducing credentials of natural gas and its schedules provided by regulators. The emissions-per- categorization as a clean fuel. equipment item then can be aggregated to a plant total In the U.S., awareness of the raw methane emissions to produce a volume for undesirable leaks, or fugitive environment in the natural gas production and supply emissions. This method takes no account of the actual value chains has been growing. Emissions traces seen leak rates, or if in fact the equipment is leaking at all. from space mirror the concentrations of activity around The second, so-called incumbent, method is what is unconventional oil & gas production. referred to as EPA Method 21. A measurement instrument, Methane is a powerful greenhouse Raw methane is i.e., a flame ionization detector, is held near the stream of gas in its unburnt form. In fact, raw a suspected leak and measures the concentration of the methane is 86 times more potent fugitive gas in the atmosphere (typically on a parts-per- as a greenhouse gas than CO when million basis). 2 86xmore potent as a impact is considered over a 20-year greenhouse gas It is difficult to underestimate the impact of Method 21- period. Ultimately experts agree type emissions measurements on the oil & gas industry that if natural gas is to rival coal as a than CO2 over a in recent decades. This method verifies that there is in means of reducing greenhouse gas 20-year period fact a leak — vital information that can be passed on to emissions, then emissions of raw methane in the supply repair programs. In this way, significant greenhouse gas chain must be held to less than 1% of total production. reductions have been possible over the years, not to In the U.S., raw methane emissions estimates have mention the valuable gas retained in the supply chain for been ranging from a lower level estimate of 2% of end use. overall production to around 17%. Alarmingly, the U.S. However, the historic success of Method 21 testing Environmental Protection Agency (EPA) in recent years still does not explain the wide variances in estimates has increased its estimate of emissions in upstream gas for fugitive greenhouse gas emissions, nor adequately operations by 134%, bringing the overall total to 1.4% explain why, if the method is as effective as supposed, a of total production (which from time to time they flag methane emissions footprint is visible from satellites to as a possible underestimation), or 40% higher than the an extent that alerts regulators to a growing problem. target that must be met for gas to provide comparative These questions themselves illustrate our increasing advantage over coal. sophistication, in terms of technology and otherwise, in informing ourselves as to the nature of fugitive gas emissions. 3 | Advisian Disruptive technology meets the intractable challenge of fugitive-gas emissions Seeing is believing One technology — which the EPA refers to as optical-gas imaging (OGI) — recently has been added to the list of regulator-allowable methods of measurement. It is essentially an infrared (IR) sensor capable of operating within the thermal spectrum. It generates an image of a gas leak that can be seen with the human eye. For the first time, users see what a gas concentration reading from a Method 21 test never could allow them to see: a gas cloud. For the first time, Millions of TV-news viewers were introduced to OGI when they saw EPA footage of the Aliso Canyon gas leak on October 23, 2015. It was reported to be the users see what a worst gas leak in U.S. history, with 97,100 tons of methane and 7,300 tons of gas concentration ethane released into the atmosphere. Comparisons have been made to the reading from a equivalent carbon footprint of 1.4m cars or six coal-fired power plants. Method 21 test The Aliso Canyon leak showed us the important role OGI can play in measuring a leak in terms of how much — something that Method 21 could not do. never could allow However, the more OGI is deployed the more practitioners realize that, contrary them to see: to what EPA schedules of leak estimates assume, a small number of very large leaks often are responsible for most of the emissions in a defined scope of a gas cloud. study. Further, many of the other equipment items are either not leaking at all or have such small emissions rates that they are not economically viable to fix. Compare this to the inability of the incumbent method of measurement, Method 21, to provide a mass leak rate. You could survey your entire plant and a) not know which leaks are large or small, and b) be unaware of a super-leak coming from a part of your plant not surveyed at all. This inability to provide data that supports insight into the impact of a leak-repair program, for example in terms of priority, is cause for serious concern. There is growing acceptance that the scenario has led to significant underestimations. Additionally, the idea that 80% of the emissions can be caused by 20% of the leaks has led to about reducing overall emissions totals — if those leaks are not detected and dealt with. Advisian | 4 Sustainability: Technical solutions, practical actions. Which way now? While OGI has been a massive leap forward and broadly welcomed by the industry, one fact remains: an IR sensor cannot provide quantitative information about a fugitive emission. It can only provide a qualitative image of a leak — and one that is periodically apt to either show false positives (e.g., of a moisture vapor cloud) or false negatives (e.g., because of range, focus, shadows or other issues). Every engineer knows that “you can’t improve what you can’t measure,” so Every engineer what is the way forward here? Energy companies have been incentivized to invest billions in the development of gas production and supply infrastructure. knows that “you Coal plants have been shuttered and emissions-reduction commitments have can’t improve been made on the strength of the important role that natural gas will play in the reduction of greenhouse-gas emissions. what you can’t Given that more credible technologies such as OGI are starting to be measure,” so recognized by regulators, what can be done to anticipate this emerging what is the way realization that a lack of fugitive emissions control in the production environment could be jeopardizing the agreed-upon environmental forward here? credentials of this clean burning fuel? It is difficult to prescribe a solution to this that will work for all industry, but one fact is clear: without the ability to quantify an emission from a leaking equipment item in a process, any leak-repair program will have to be based to some extent on something other than science. Indeed, if the logic follows that about 20% of a given plant-environment fugitive emissions are large leaks that are economically viable to fix, then a technology’s ability to quickly determine which 20% of leaks that is will be key.
Recommended publications
  • Determination of Total Methane Emissions from the Aliso Canyon
    CALIFORNIA AIR RESOURCES BOARD Determination of Total Methane October 21, 2016 Emissions from the Aliso Canyon Natural Gas Leak Incident This report documents the California Air Resources Board (ARB) staff’s determination of the total methane emissions from the Aliso Canyon natural gas leak incident and the amount needed for full mitigation of the climate impacts. The mitigation is expected to be accomplished with projects funded by the Southern California Gas Company. The report summarizes the various efforts by ARB and others to measure methane emissions from the Aliso Canyon natural gas leak incident, and how they were used to estimate the total methane emitted from the incident. The total amount of methane needed to fully mitigate the climate impacts of the leak is 109,000 metric tons. CALIFORNIA AIR RESOURCES BOARD Table of Contents Summary ..................................................................................................................................................... 1 Background ................................................................................................................................................. 2 Quantifying the Amount of Methane Emitted ......................................................................................... 5 Preliminary ARB Estimate ..................................................................................................................... 5 Emission Estimates from Southern California Gas Company ........................................................
    [Show full text]
  • EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
    EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation.
    [Show full text]
  • Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL)
    EPA Gas STAR Program – Annual Implementation Workshop Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL) Daniel Brake Active Imaging Solutions ITT Industries Space Systems Division Rochester, New York email: [email protected] phone: (585) 269-5070 www.ssd.itt.com/angel 25 October 2005 2 ITT Industries – Corporate Overview ITT Industries: ~$7.0 Billion (annual revenue) – ITT Defense: ~$3.0 Billion (annual revenue) – Supplier of sophisticated military defense systems and provider of advanced technical and operational services to government customers. – ITT Industries Space Systems Division – Over 50 years as a national leader providing innovation and quality in the design, production and development of Remote Sensing, Meteorological, and Navigation satellite systems. 3 Hydrocarbon Gas Detection: Active Remote Sensing Definition – A remote sensing system that can emit its own electromagnetic energy at a target and then record the interaction between the energy and the target. Application – DIAL (Differential Absorption Lidar) is an example of an active remote sensing technology. A DIAL system sends out controlled pulses of laser energy and then measures the interaction between the laser energy and the target. Advantages – The ability to obtain direct, non-point15 sourOn-ce,line measurementsTheof d iffespecificrence in gases, regardless of the time of day or season. Ability to accuratelywavelength is locate and aquantifybsorption betweareean th eemissions. two wavelengths can rption chosen close to 10 The ability to control the what, when andpeak where of the of target illuminabe usedtion. to dete rmActiveine systems are absorption the concentration of the Abso particularly advantaged when the desired5 featu wavelengtre hs are notchemical sufficient responsibllye provided by the sun, such as portions of the mid-wave infrared (IR).
    [Show full text]
  • GHG Emissions in King County: a 2017 Update
    GHG Emissions in King County: A 2017 Update GHG Emissions in King County: 2017 Inventory Update, Contribution Analysis, and Wedge Analysis July 2019 Prepared for King County, Washington By ICLEI USA 1 GHG Emissions in King County: A 2017 Update ICLEI Team Hoi-Fei Mok Michael Steinhoff Eli Yewdall King County Staff Matt Kuharic The inventory portion of this report draws extensively on King County Greenhouse Gas Emissions Inventory: A 2015 Update, produced by Cascadia Consulting Group and Hammerschlag & Co, LLC. 2 GHG Emissions in King County: A 2017 Update Table of Contents Acronyms ................................................................................................................................................................................................. 4 Introduction and Context .................................................................................................................................................................. 5 Inventory update approach ......................................................................................................................................................... 5 2017 Inventory Update ...................................................................................................................................................................... 7 Results .................................................................................................................................................................................................. 7 Supplemental
    [Show full text]
  • Reducing Methane Emissions from Natural Gas Distribution Mains and Services Regulation
    Working with you to protect ​ the environment for wildlife September 18, 2020 ​ Sharon Weber Massachusetts Department of Environmental Protection 1 Winter Street Boston, MA 02108 Submitted via email: [email protected] Program review of the 310 CMR 7.73: Reducing Methane Emissions ​ from Natural Gas Distribution Mains and Services regulation ​ Dear Ms. Weber, Thank you for the opportunity to submit our comments on the program review of the Reducing Methane Emissions from Natural Gas Distribution Mains and Services regulation. Please accept these comments from Berkshire Environmental Action Team (BEAT) and it’s No Fracked Gas in Mass program. BEAT works to protect the environment for wildlife in support of the natural world that sustains us all. No Fracked Gas in Mass works to stop the expansion of fossil fuel infrastructure in the Northeast states and to promote energy efficiency and sustainable, renewable sources of energy and local, permanent jobs in a clean energy economy. In answer to questions asked by DEP at the Stakeholder Meeting: ● Should the decreasing annual emissions limits be extended beyond 2020? Yes. With even the LDC spokesperson agreeing at the stakeholder meeting, continuing decreasing the annual emissions limits should be the bare minimum baseline scenario. If anything there should be a steeper rate of incremental decrease in emissions each year while we phase out fossil fuels to comply with our state’s 2050 Decarbonization goals1. 1 “Determination of Statewide Emissions Limit for 2050,” Karen Theoharidies, Executive Office of Energy and ​ Environmental Affairs. April 20, 2020 https://www.mass.gov/doc/final-signed-letter-of-determination-for-2050-emissions-limit/download ● What are the most appropriate emission factors or other metrics to determine emission limits and evaluate progress? The current method is to only count known leaks from specific utility-identified self-reported locations.
    [Show full text]
  • Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course
    Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course July 2015 Table of Contents 1. Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course ............................................... 1 1.1 Introduction and Overview ............................................................................................................................ 1 1.2 Welcome ........................................................................................................................................................ 1 1.3 Course Goal .................................................................................................................................................... 1 1.4 Training Outcomes ......................................................................................................................................... 1 1.5 Training Outcomes (Continued) ..................................................................................................................... 2 1.6 Course Objectives .......................................................................................................................................... 2 1.7 Course Topic Areas ........................................................................................................................................ 2 1.8 Course Overview ............................................................................................................................................ 2 1.9 Module One: Overview of CNG, LNG,
    [Show full text]
  • Natural Gas & Climate Change
    Eric D. Larson, PhD Natural Gas & Climate Change Natural Gas & Climate Change Eric D. Larson, PhD Climate Central surveys and conducts scientific research on climate change and informs the public of Princeton key findings. Our scientists publish and our journalists report on climate science, energy, sea level rise, One Palmer Square, Suite 330 wildfires, drought, and related topics. Climate Central Princeton, NJ 08542 is not an advocacy organization. We do not lobby, and Phone: +1 609 924-3800 we do not support any specific legislation, policy or bill. Climate Central is a qualified 501(c)3 tax-exempt organization. Call Toll Free +1 877 4-CLI-SCI (877 425-4724) Climate Central scientists publish peer-reviewed research on climate science; energy; impacts such www.climatecentral.org as sea level rise; climate attribution and more. Our work is not confined to scientific journals. We investigate and synthesize weather and climate data and science to equip local communities and media with the tools they need. May 2013 Report Author Eric D. Larson, PhD Senior Scientist Dr. Larson leads energy-related research at Climate Central while also being part of the research faculty at Princeton University in the Energy Systems Analysis Group of the Princeton Environmental Institute. His research interests include engineering, economic, and policy-related assessments of advanced clean-energy technologies and systems. He has published over 80 peer-reviewed articles and more than 200 papers in total. He has a Ph.D. in Mechanical Engineering from the University of Minnesota. Contents Key Findings . 1 Report in Brief . 4 1. Introduction . .10 2.
    [Show full text]
  • Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
    Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting
    [Show full text]
  • How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
    DYNA ISSN: 0012-7353 ISSN: 2346-2183 Universidad Nacional de Colombia Mariño-Martínez, Jorge Eliecer; Chanci-Bedoya, Rubén Darío; González-Preciado, Angélica Julieth Methane emissions from coal open pits in Colombia DYNA, vol. 87, no. 214, 2020, July-September, pp. 139-145 Universidad Nacional de Colombia DOI: https://doi.org/10.15446/dyna.v87n214.84298 Available in: https://www.redalyc.org/articulo.oa?id=49666177016 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative • Methane emissions from coal open pits in Colombia Jorge Eliecer Mariño-Martínez a, Rubén Darío Chanci-Bedoya b & Angélica Julieth González-Preciado a a Escuela de Ingeniería Geológica, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia. [email protected], [email protected] b Unidad de Planeación Minero Energética, Colombia. [email protected] Received: December 21th, 2019. Received in revised form: May 25th, 2020. Accepted: June 16th, 2020. Abstract From the agreements on climate change Colombia is committed to measuring and reporting emissions of greenhouse gases (GHG), and among these, the coal mining fugitive emissions. The country has been reporting emissions from international tables-Level 1 of the IPCC, but this proposal is suggesting doing so from exploration of CBM-Level 2 using canisters desorption systems. For the Colombia open pit mining (provinces of Guajira and Cesar) the analyses from international tables and from CBM studies found that emissions from tables- Level 1 (106.02 Gg of methane) exceed the content found in direct measurements-Level 2 (75.92 Gg of methane) in 40%.
    [Show full text]
  • Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions
    GHG 2011 coverspreads 19/04/2011 22:53 Page 1 IPIECA is the global oil and gas industry association for environmental and social issues. It develops, shares and promotes good practices and knowledge to help the industry improve its environmental and industryPetroleum guidelines for reporting greenhouse gas emissions social performance, and is the industry’s principal channel of communication with the United Nations. Through its member-led working groups and executive leadership, IPIECA brings together the collective expertise of oil and gas companies and associations. Its unique position within the industry enables its members to respond effectively to key environmental and social issues. 5th Floor, 209–215 Blackfriars Road, London SE1 8NL, United Kingdom Telephone: +44 (0)20 7633 2388 Facsimile: +44 (0)20 7633 2389 E-mail: [email protected] Internet: www.ipieca.org Petroleum industry guidelines for The American Petroleum Institute is the primary trade association in the United States representing the Climate oil and natural gas industry, and the only one representing all segments of the industry. reporting greenhouse change Representing one of the most technologically advanced industries in the world, API’s membership includes more than 400 corporations involved in all aspects of the oil and gas industry, including 2011 exploration and production, refining and marketing, marine and pipeline transportation and service gas emissions and supply companies to the oil and natural gas industry. API is headquartered in Washington, D.C. and has offices in 27 state capitals and provides its members with representation on state issues in 33 states. API provides a forum for all segments of the oil and natural gas industry to pursue public policy objectives and advance the interests of the industry.
    [Show full text]
  • Policy Brief
    POLICY BRIEF Bryndis Woods, Liz Stanton, PhD, and Eliandro Tavares May 2019 Fixing Massachusetts’ Gas Leaks Pays for Itself The gas leaked from old and damaged pipes is expensive: Massachusetts gas utility customers spend over $11 million every year to buy gas that is leaked into the atmosphere before it can be delivered to homes and businesses. Many leaks that are not considered potential explosion risks (called “Grade 3”) cost more (in lost gas) to leave unfixed than to repair. Commissioned by Massachusetts Gas Leaks Allies—a coalition of over 20 nonprofits, researchers, and experts—this Applied Economics Clinic policy brief estimates the payback period for repair of two categories of Grade 3 leaks: Significant Environmental Impact (SEI) leaks, for which lost gas pays for repairs in just 1 year; and all other (non-SEI) Grade 3 leaks, with a payback period of 10 years. Massachusetts Gas Leaks Gas Leak Repair Payback Period According to the Massachusetts Department of Public In 2017, gas lost before reaching Massachusetts gas utility Utilities (DPU), repairing gas leaks cost the state’s gas utility customers cost $11.3 million. While the average cost to fix customers $65 million in 2017, or about $3,740 per leak. a Grade 3 leak is approximately the same ($3,740) regardless of the leak volume, the cost of lost gas is not. In 2016 Massachusetts became the first state in the nation Large volume SEI leaks cost $3,850 a year in lost gas, on to enact a law requiring that these leaks of “Significant average, while smaller Grade 3 leaks cost $380.
    [Show full text]
  • Chapter 7 on Energy Systems Gas (GHG) Emissions
    7 Energy Systems Coordinating Lead Authors: Thomas Bruckner (Germany), Igor Alexeyevich Bashmakov (Russian Federation), Yacob Mulugetta (Ethiopia / UK) Lead Authors: Helena Chum (Brazil / USA), Angel De la Vega Navarro (Mexico), James Edmonds (USA), Andre Faaij (Netherlands), Bundit Fungtammasan (Thailand), Amit Garg (India), Edgar Hertwich (Austria / Norway), Damon Honnery (Australia), David Infield (UK), Mikiko Kainuma (Japan), Smail Khennas (Algeria / UK), Suduk Kim (Republic of Korea), Hassan Bashir Nimir (Sudan), Keywan Riahi (Austria), Neil Strachan (UK), Ryan Wiser (USA), Xiliang Zhang (China) Contributing Authors: Yumiko Asayama (Japan), Giovanni Baiocchi (UK / Italy), Francesco Cherubini (Italy / Norway), Anna Czajkowska (Poland / UK), Naim Darghouth (USA), James J. Dooley (USA), Thomas Gibon (France / Norway), Haruna Gujba (Ethiopia / Nigeria), Ben Hoen (USA), David de Jager (Netherlands), Jessica Jewell (IIASA / USA), Susanne Kadner (Germany), Son H. Kim (USA), Peter Larsen (USA), Axel Michaelowa (Germany / Switzerland), Andrew Mills (USA), Kanako Morita (Japan), Karsten Neuhoff (Germany), Ariel Macaspac Hernandez (Philippines / Germany), H-Holger Rogner (Germany), Joseph Salvatore (UK), Steffen Schlömer (Germany), Kristin Seyboth (USA), Christoph von Stechow (Germany), Jigeesha Upadhyay (India) Review Editors: Kirit Parikh (India), Jim Skea (UK) Chapter Science Assistant: Ariel Macaspac Hernandez (Philippines / Germany) 511 Energy Systems Chapter 7 This chapter should be cited as: Bruckner T., I. A. Bashmakov, Y. Mulugetta, H. Chum, A. de la Vega Navarro, J. Edmonds, A. Faaij, B. Fungtammasan, A. Garg, E. Hertwich, D. Honnery, D. Infield, M. Kainuma, S. Khennas, S. Kim, H. B. Nimir, K. Riahi, N. Strachan, R. Wiser, and X. Zhang, 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R.
    [Show full text]