A Sheffield Hallam University Thesis

Total Page:16

File Type:pdf, Size:1020Kb

A Sheffield Hallam University Thesis Computer aided tool management system : an implementation model. SHAFAGHI, Mohammad Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/3186/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/3186/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. 6 KW 301307 Sheffield Hallam University REFERENCE ONLY ProQuest Number: 10700994 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10700994 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 COMPUTER AIDED TOOL MANAGEMENT SYSTEM AN IMPLEMENTATION MODEL Mohammad Shafaghi A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the degree of Doctor of Philosophy SHEFFIELD HALLAM UNIVERSITY May 1994 ABSTRACT COMPUTER AIDED TOOL MANAGEMENT SYSTEM; AN IMPLEMENTATION MODEL by Mohammad Shafaghi In recent years considerable attention has been diverted towards devising new strategies to deal with the competitive nature of manufacturing environments. Such strategies are often influenced by the costs and quality of the manufactured products. An effective tool management and control system can significantly contribute to the efficiency of manufacturing facilities by maintaining the flow of production, reducing manufacturing costs, and be instrumental to the quality of finished goods. Most companies however, have consistently overlooked the importance of tooling and its impact on the efficiency of their manufacturing facilities, consequently it has become a major production bottleneck. Hence, the need for uncovering the nature, extent, and underlying causes of tooling problems. Having recognised the importance of a Computer Aided Tool Management And Control Systems (CATMACS) as a partial solution to the efficient management of tooling resources, the study then looks at the implementation of CATMACS in fourteen manufacturing companies in the UK, developing some 40 propositions. Based on the developed propositions, a framework for the implementation methodology is constructed. The framework consists of five phases; Tool audit, Strategy, Design, Action, and Review. The framework has been evaluated and the inputs and outputs to the phases have been identified. The framework represents a significant step in understanding of CATMACS implementation, in particular: • It addresses the need for such system. • It provides the basis of an implementation toolkit. • It provides guidance for the best way of implementing a CATMACS. • It is constructed using hard data. I PREFACE This thesis is submitted to the School of Engineering of Sheffield Hallam University for the degree of Doctor of Philosophy. This study was conducted in the division of Design and Manufacturing of School of Engineering. I would like to express my deepest gratitude and appreciation to my supervisors Dr. D.T.S. Perera (School of Engineering), and Professor D. Tranfield (Sheffield Business School) for their guidance and constructive criticism throughout the course of this study. I would like to thank my friends; especially Christine Osbourne and James Battersby for their help and support. Also my colleagues and administrative staff within the School of Engineering, and the Research Office for their help and support. Finally, I like to thank those individuals from companies who participated in this study. The results obtained during the course of this research are to the best of my knowledge original, except where the reference is made to the work of others. M. Shafaghi May 1994 H Process of PhD The structure of the PhD thesis is illustrated in Figure 1. The chapters are represented by rectangular boxes, where, the chapter under review is highlighted by the thick arrow pointing to the right or top of the boxes. For example in figure 1, "General Overview" is the topic under discussion. Chapter One General Overview Chapter Two Literature Search Chapter Three Methodology Chapter Four Chapter Five Quantitative Research Qualitative Research Chapter Six Outcomes and Propositions Chapter Seven Conceptual Model Chapter Eight Conclusion Fig 1: Process of PhD CONTENT ABSTRACT I PREFACE II Process of PhD III 1 TOOL MANAGEMENT SYSTEM; GENERAL OVERVIEW 1.1 Manufacturing and Tooling 1 1.2 Evolution of Tool Management System 2 1.3 Tooling Problems 2 1.4 Computer Aided Tool Management And 4 Contro1 System (CATMACS) 1.5 Focus of the Research 5 2 LITERATURE REVIEW 2.1 Introduction 7 2.2 Tooling Problems 8 2.3 Tool Management Systems 12 2.4 Computer Aided Tool Management And 14 Control System (CATMACS) 2.5 Tool Management Software 16 2.6 Implementation of Computerised Tool 21 Management System 2.7 Tool Management Research 27 2.8 The scope of the research 2 9 3 METHODOLOGY 3.1 Introduction 34 3.2 Research Methodology 34 3.3 Case study 3 5 3.4 Questionnaire 3 6 3.5 The Research Process 3 8 3.6 Qualitative vs Quantitative 41 4 QUANTITATIVE RESEARCH 4.1 Introduction 47 4.2 Research Design 47 4.3 Questionnaire design 49 4.4 Pretesting the Questionnaire 50 4.5 Sample Classification and Profile 50 4.6 Survey Results 54 4.7 Types of Perceived Tooling problems 63 4.7.1 High Tool Variety 63 4.7.2 Tool Unavailability 64 4.7.3 Cost of Tooling 64 4.7.4 Tool Tracking and Control 65 4.7.5 High Tool Inventory 66 4.7.6 Lack of Tool Refurbishment Services 6 6 A 4.8 In-company Interviews 67 4.8.1 Lack of Understanding of Concept of 67 Tool Management 4.8.2 Lack of tooling Strategy 68 4.8.3 Lack of Prioritisation 68 4.8.4 The Degree of Awareness 68 4.9 Summary 69 QUALITATIVE RESEARCH 5.1 Introduction 74 5.2 Case Selection 74 5.3 Research Design 75 5.4 Case Analysis 76 5.5 Case Studies 78 5.6 Summary 125 5.6.1 Sample Classification and Profile 126 OUTCOMES and PROPOSITIONS 6.1 Introduction 131 6.2 Case Study Outcome 131 6.2.1 Company Position 131 6.2.2 Tool Audit 133 6.2.3 Investment Justification 133 6.2.4 Tool Management Software 134 6.2.5 The Change Process 136 6.2.6 Implementation Plan 137 6.2.7 Project Leader 139 6.2.8 Management Commitment 141 6.2.9 Education and Training 143 6.2.10 System Changeover 145 6.2.11 System Benefits 147 6.2.12 Evaluation 149 6.2.13 Critical Factors 153 6.3 Propositions 156 6.3.1 Company Position 156 6.3.2 Tool Audit 157 6.3.3 System Justification 158 6.3.4 Tool Management Software 159 6.3.5 The Change Process 160 6.3.6 Implementation Plan 161 6.3.7 Champion 163 6.3.8 Management commitment 164 6.3.9 Education and Training 165 6.3.10 System Changeover 167 6.3.11 System Benefits 168 6.3.12 Evaluation 168 6.3.13 Critical Factors 169 7 DEVELOPMENT OF FRAMEWORK 7.1 Introduction 171 7.2 Initial Framework 171 7.3 Phase 1:- Strategy 177 7.4 Phase 2:- Tool Audit 180 7.5 Phase 3:- Design 191 7.6 Phase 4:- Action 197 7.7 Phase 5:- Review 201 7.8 Validation 203 8 CONCLUSIONS 8.1 Quantitative Results 207 8.2 Qualitative Research 210 8.3 Qualitative Results 211 8.4 CATMACS Methodology 214 8.5 Further Research 221 REFERENCES 223 APPENDIX 1 Questionnaire and Covering Letter A-l APPENDIX 2 Company Information A-8 APPENDIX 3 Questionnaire, Covering Letter, and A-13 relevant notes for the Validation of the Model. APPENDIX 4 List of Tables and Figures A-22 APPENDIX 5 Paper Submitted A-25 CHAPTER ONE TOOL MANAGEMENT SYSTEMS; General Overview, 1.1- Manufacturing and Tooling A manufacturing company can be viewed as a system which transforms raw materials into finished products through the use of manufacturing resources. The manufacturing resources are crucial aspects in this process and can be considered to be anything that is required to produce the final product. As a manufacturing resource, tooling is a fundamental aspect of this transformation process, and it is an inescapable fact of manufacturing life that every manufactured product is built using a tool or by a machine that was made using tools. Broom (1967) defined tooling as all equipment and special fixtures that the system can draw on and use during the setup and operation of a machine or assembly process. Allen et al (1980) expanded this definition to cover a wide range of equipment such as jigs, fixtures, pallets, cutting tools, rollers, brushes, tool holders, laps, chucks, mandrels, collets, centres, arbors, set-blocks, angle plates, templates, molds, cams, dies, tool magazines and patterns to name a few, and Melnyk (1988) categorised these various items to "Transportation Tooling", equipment used for transferring parts from one work station/area to another; "Set-up Tooling", equipment used primarily during the set-up, and "Production Tooling", equipment used at work centres in the production of given parts.
Recommended publications
  • Success Measured Beyond Tool Life
    SUCCESS MEASURED BEYOND TOOL LIFE ENGINEERING CASE STUDIES 04 USING SMARTER TOOL MANAGEMENT FEATURES IN MAKINO A-51NX MILLS Manufacturing Mastery Since 1924 Central Screw Products Company (CSP) is a 3rd generation machin- ing company, founded in 1924. CSP leverages the latest in robot- ics and automation technology to achieve one of the machining industry’s most efficient engineer- ing to production ratios. The re- sult is mastery and control of the manufacturing process, maximum customer value, and unparalleled quality. We machine Titanium, Inconel, and other hard materials to precise tol- erances for the most demanding industries such as defense, medi- cal, aerospace, and automotive. Our global supply chain provides a reliable single source for diverse secondary operations and value added logistics. The Makino brand is universally renowned for high-power, high-speed precision equipment. However, all of this capability comes to a halt without smart tool CSP is ISO 9001:2015 Certified, management. AS 9100 Compliant, ITAR Regis- tered, and a proud recipient of a Central Screw Products use our Makinos to machine demanding superalloys like number of industry and OEM sup- Inconel 718. Using the tool management features built into our Makino, in con- plier quality awards. junction with Haimer holders and OSG drills, our OEE (Overall Equipment Effec- tiveness) has nearly doubled! This increased uptime in our spindles makes DGW www.centralscrewproducts.com a leader in superalloy machining. Read all CSP case studies here The Makino A51NX provides a sophisticated array of tool management features. Subscribe to CSP news For example, we can monitor and replace tools based on time, the number of workpieces, or even active parameters from spindle load monitoring or external broken tool detection.
    [Show full text]
  • Tool Management
    TOOL MANAGEMENT www.haimer-usa.com HAIMER TOOL MANAGEMENT LOGISTICS SYSTEM – OVERVIEW Corner module with perforated wall Connection part shrink fit machine Power Clamp Premium Plus Connection part measuring and balancing system Tool Dynamic Preset Waste disposal module Shelf module folders Assembly station Vertical cabinet universal Tool holder rack 2 Workbench assembly module Corner module with rear wall for storing collets and tools Workbench info module Shelf module parts Magazine cabinet Vertical cabinet tool holders 3 TOOL MANAGEMENT – FOR EFFICIENT WORKING Use: The HAIMER Tool Management completes the HAIMER product program as a sys- tem partner around tool clamping. That means HAIMER offers the complete Tool Management equipment from a single source. As a complete solution for tool pre- setting and tool management, the HAIMER Tool Management provides you with functional and ergonomic criteria for the design of work stations. The storage, setup and management of tools is simplified and optimized by the HAIMER solutions so that efficient working is guaranteed. – Modular room design according to the customer's requirements – Shrinking, balancing and presetting already integrated into the concept – Tidy and isolated solution for concentrated working 4 Technical data subject to change without prior notice CORNER MODULE Corner module with perforated wall Use: The perforated back wall and drawer unit provide a clean and structured workspace. The three integrated LED spots ensure a continually bright and comfortable working atmosphere. Delivery includes: – Corner module with a perforated wall, roof with LED lighting, drawer unit Description Order No. Corner module 4.0 84.802.00.3 Technical data subject to change without prior notice 5 WORKBENCH ASSEMBLY MODULE Picture shows: Assembly module with special configuration, Order No.
    [Show full text]
  • Management and Monitoring of Rfidbased Cutting Tool Information
    ISSN (Print) : 2319-8613 ISSN (Online) : 0975-4024 Mior Uzair Mior Hassan et al. / International Journal of Engineering and Technology (IJET) Management and Monitoring of RFID- based Cutting Tool Information for Integrated Manufacturing Mior Uzair Mior Hassan#1 , Aini Zuhra Abdul Kadir#2 # Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia 1 [email protected] 2 [email protected] Abstract—The demand of integrating manufacturing design and process planning with actual production activities such as cutting tool information is essential to enhance planning efficiency as well as improve simulation accuracy. However, cutting tools information that involves static and dynamic data is difficult to track causing the planning and simulation activities to be isolated, using outdated information and lack of reliability. This paper presents the initial functions of an Integrated Cutting Tool Management and Monitoring system (ICTMMs) utilizing RFID technology. RFID is used as a device to identify individual cutting tool as well as to track cutters data at production floor. Integration is possible with the use of STEP-NC as the exchange data format. User interface is designed using Labwindows. General overview are discussed based on STEP-NC input file. The development of ICTMMs helps to simplify management of cutting tool at production floor and support the integration of tool information throughout the manufacturing chain. Keyword-Tool management, RFID, STEP-NC I. INTRODUCTION Integrated manufacturing environment involves continuous interaction of various computer-aided (CAx) systems functions to ensure full information can be utilized in assisting various manufacturing activities. For example, during production planning activities, cutting tools data is essential for effective machining operation which is normally obtained beforehand based on operator’s experience, catalogues or any theoretical documents.
    [Show full text]
  • End Mill Holders
    MASTER TOOLHOLDING CATALOG Toolholding, Tapping, and Boring solutions Toolholding Tapping Boring HISTORY Parlec is established in Rochester N.Y., as a job shop specializing in 1948 the manufacturing of Sulky Hubs. Parlec begins producing and distributing the Numertap and 1973 Autofacer product lines. Parlec expands its product line with the introduction of Toolholders, 1977 which are sold as Numertap and Autofacer accessories. 1980 The first Parsetter TMM® is produced. Parlec builds a new 42,000 square-foot, state-of-the-art 1985 manufacturing facility just outside of Rochester in Fairport, N.Y. Parlec begins to manufacture and distribute its own line of 1992 Boring Tools. Parlec becomes ISO 9001 certified. Parlec’s sales triple from 1997 1992-1997. Parlec further enhances its product line to include Workholding. 1998 Construction of a 58,000 square-foot plant addition begins. Parlec enters the Asian market with the opening of a sales and 2003 service office in Nanjing China. Parlec acquires Bristol Tool. Driven and static tools are added 2004 to Parlec’s extensive product line. A new sales, engineering and distribution facility opens in Bristol, England. Parlec continues to expand its world wide footprint by opening a Wholly Owned Foreign Enterprise in Nanjing. This gives the 2006 company full sales, engineering, customer support and distribution capabilities on 3 continents. Sales offices are opened in Tianjin, Xian, Wuxi, and Chengdu to 2009 expand the China presence. Parlec partners with Gerardi for distribution of Driven & Static 2010 Tooling in Europe. Parlec begins distribution of Right angle heads in China. Parlec successfully completes a $5 million dollar capital investment 2012 campaign to automate and expand its manufacturing capabilities in the United States.
    [Show full text]
  • Life Cycle Oriented Milling Tool Management in Small Scale Production
    Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 29 ( 2015 ) 293 – 298 The 22nd CIRP conference on Life Cycle Engineering Life cycle oriented milling tool management in small scale production a b a Dominik Heeschen * Fritz Klocke Kristian Arntz aFraunhofer-Institute for Production Technology (IPT), Steinbachstraße 17, 52074 Aachen, Germany bLaboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Steinbachstrasse 19, 52074 Aachen, Germany * Corresponding author. Tel.: +49-241-8904-324; fax: +49-241-8904-6324. E-mail address: [email protected] Abstract The milling technology is characterized as the most important manufacturing technology in a variety of industries. Moreover, recent developments in hardware and software issues have increased technology’s complexity which is, beyond others, caused by different milling variants and a high number of different milling tools. Milling tools are responsible for a significant cost position in manufacturing driven companies which is shown in the paper by an industry wide survey. Due to the costly and wasteful production it can be shown that this is a significant cost driver. This paper introduces an integrated life cycle oriented approach for the standardization and optimization (including the reuse of tools by standardized repair processes) of milling tools in order to enhance the life cycle of milling tools, reduce overall costs and therefore raise the company’s sustainability. © 20152015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the International). Scientific Committee of the Conference “22nd CIRP conference on Life Cycle PeerEngineering.-review under responsibility of the scientifi c committee of The 22nd CIRP conference on Life Cycle Engineering Keywords: Life Cycle Management; Life Cycle Optimization; Life Cycle Costing; LCC; Manufacturing; Milling Tools 1.
    [Show full text]
  • Tool Solutions Focus Segments for the Aerospace Industry Our Introdution
    Tool solutions Focus segments for the aerospace industry Our introdution OPTIMISED PRODUCTION KYOCERA UNIMERCO Tooling A/S Norms and ECR – your full-service tooling partner – guarantee of identical tools, whether new or RE•NEW® KYOCERA UNIMERCO offers a complete tooling programme for All of our companies utilise integrated CAD/CAM for design and machining aerospace metals and fibre composites. As the choice production. The solution is part of the guarantee of 100% iden- of tool is always based on a cost-benefit assessment, the solution tical design and production. All tools have been designed in ac- often includes standard, customised carbide and diamond tools. cordance with our norms (a norm is an instruction that controls This allows you to get the best total solution from one source, thus the geometry, measurement and manufacturing process). The reducing your supplier base. norms are developed and maintained centrally and subsequently distributed to all companies in KYOCERA UNIMERCO via our High performance tooling solutions central server. To machine a component at the lowest possible costs, you need For this specific purpose, the central programme database the best possible combination of machinery, machining param- secures that all CNC-controlled machines in all our companies use eters and tooling solutions. Therefore, we analyse all aspects of the exact same machining data. All CNC machines are from the the production process involving cutting tools and systematically same manufacturer and are also calibrated to a master machine. optimise them. Subsequently, our tool developers define the opti- Programmes are automatically deleted from each machine imme- mum tooling solution customised to fit your requirements.
    [Show full text]
  • Virtual Cutting Tool Management System for Milling Process
    148 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 Virtual Cutting Tool Management System for Milling Process Haslina Arshad† , Rosilah Hassan††, Nazlia Omar†† and Shahnorbanun Sahran†, †Department of Industrial Computing, ††Department of Computer Science, Faculty of Information Science and Technology Universiti Kebangsaan Malaysia, Malaysia catalogues. On the other hand, the manual catalogue Summary provided by the manufacturer is limited to single user only Information of cutting tools is very important for the and when more than one user needs to use the catalogue at effectiveness of cutting process. Previously, traditional search the same time the problem will surface. This will be a methods by referring to the catalogues for the right cutting tool waste of time that could delay the whole cutting process has been a burden to the user. As a result, the probabilities of and eventually the lead time of the whole process. Fast choosing the wrong cutting tools were high. In this work, a new and accurate access to information about available cutting tools management system for milling process has been developed for training students before they actually perform the manufacturing resources and data is critical to reducing milling process. With the specific parameters such as cutter type, production cost and maximizing machine productivity [1]. part number, dimension and material types and its properties, the Problems also arise when new cutting tools for milling user can easily get detail information of the cutting tools such as process are introduced to the market. This might take a cutter dimension, insert types and its properties.
    [Show full text]
  • Mastercam Mill Has Been Shop-Tested More Than Any CAM Program in the World
    THE FUTURE STARTS HERE MILL LATHE MILL-TURN WIRE ROUTER Mastercam for DESIGN SOLIDWORKS® (L-R) Mark Summers, Chairman; Meghan West, President and CEO; and Brian Summers, Executive Vice President MOVING OUR INDUSTRY FORWARD As the world’s most widely used CAM software, Mastercam has a tremendous community of THE FUTURE IS FAST. users around the globe. It is our intention to leverage that combined energy and intelligence for our mutual benefit. That’s the heart of our new Masters of CAM initiative. We should know. We are helping to shape it. Over the coming weeks, month, and years, we will be collecting stories, tips, tricks, and For Mastercam, speed and efficiency have been driving innovation for years. Dynamic Motion™, innovative solutions from our extended Mastercam community. This input will be available to everyone milling and turning toolpaths, and now Accelerated Finishing™ have put us at the leading edge of efficiency at MastersofCAM.com. and reduced cycle times. By dramatically reducing cycle times while extending tool and machine life, we’ve helped our users to not only stay ahead of the competition, but define the standards of the industry. It takes more than one or two clever ideas to stay competitive these days. So we’ll be collecting as many good ideas as we can. Some ideas will help your shop’s productivity. Some ideas will Today, there is a growing need for collecting, analyzing, and using data across the entire manufacturing inspire creativity. And some ideas may direct our future software development. We know a lot process — often referred to as Industry 4.0.
    [Show full text]
  • Tooling System BT Interface Series
    Keeping the Customer First Tungaloy Report No. 413-E Tooling system NEW BT Interface Series Tooling system for unique function and wide variation Tooling system BT Interface P. 6 P. 1 1 Shell mill holder ER Collet chuck systems P. 2 8 P. 3 2 Power chuck endmill holder Side lock endmill chuck holder P. 3 4 P. 3 6 Side lock drill chuck holder Adjustable drilling diameter holder P. 3 8 P. 4 5 Modular tooling system Hydraulic chucking system P. 5 2 P. 5 3 Balanceable collet chuck Centering tooling system P. 5 3 P. 5 7 Tapping attachment Thermal shrinking holder P. 7 0 P. 7 2 Pull stud Electrical nut-clamping torque control device 2 Product introduction P. 1 1 - Short overhang. - Applicable for standard ER collets. - Provides high gripping force and less runout with short overhang. - Balanced to G2.5, max. n: 20,000 min-1 - Symmetric design for high speed machining. P. 2 8 - Provides extremely high gripping force with only a small tightening torque. - High runout accuracy at 100mm. Over hang is 0.009 mm - High stiffness is achieved with the clamping mechanism that utilises the face contact between clamping nut and the face of the shank. - The highly rigid system prolongs tool life considerably. - Prevents interference with the work piece due to the slim design. - Preset screws available for all SC straight collets for positioning of the tool. - Produced from a special steel for vibration damping. - Sealed nut structure. - No axial drawback of the tool shank when chuck is tightened. Structure ① Shallow tapered front end cone ② Clamping nut ③ Helical slot ④ Needle bearing ⑤ Front Seal ⑥ Ventilation bore (thread M4) ⑦ Preset screw thread ⑧ Cap screw (for the preset screw) ⑨ Preset screw ⑩ Ground bore ⑪ Grip groove (for collet release) P.
    [Show full text]
  • ERP-The Dynamics of Supply Chain and Process Management.Pdf
    ERP Avraham Shtub • Reuven Karni ERP The Dynamics of Supply Chain and Process Management Second Edition Avraham Shtub Reuven Karni Faculty of Industrial Department of Industrial Engineering & Management Engineering & Management Technion - Israel Institute of Technology Shenkar College of Engineering & Design 32000 Haifa 52526 Ramat Gan Israel Israel [email protected] [email protected] ISBN 978-0-387-74523-7 e-ISBN 978-0-387-74526-8 DOI 10.1007/978-0-387-74526-8 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009933263 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) We would like to dedicate this book to our loving wives Doreen Karni and Ailona Shtub, to Reuven Karni’s sister, Avis Goldberg and to Avy Shtub’s late brother, Israel Shtub.
    [Show full text]
  • PLM Industry Summary Jillian Hayes, Editor Vol
    PLM Industry Summary Jillian Hayes, Editor Vol. 14 No 23 Friday 8 June 2012 Contents Acquisitions _______________________________________________________________________ 3 Autodesk Acquires Vela Systems ___________________________________________________________3 CIMdata News _____________________________________________________________________ 4 CIMdata Publishes “Executing Effectively from Design to Manufacturing” __________________________4 LMS 2012 European Vehicle Conference: CIMdata Commentary _________________________________5 Company News _____________________________________________________________________ 7 Assemble Systems and TotalCAD Systems Partner to Launch BIM Software Integration Platform________7 Bentley Systems Makes $300,000 Commitment to Habitat for Humanity of Chester County for Coatesville, Pa., Housing Project _____________________________________________________________________8 BobCAD-CAM Software Sponsors Massachusetts Highschool Industrial Engineering Program __________9 Cadence Collaborates on 3D-IC Design Infrastructure with TSMC _______________________________10 CadFaster|Collaborate™ Awarded Best of Show Mobile App for Architects at the American Institute of Architects (AIA) National Convention ______________________________________________________11 Cadgroup Australia and CADPRO Systems Join Forces to Increase the Level of Support for Their Autodesk Customers in Australia and New Zealand ___________________________________________________12 CAIPros to Use Geomagic for 3D CAI, Metrology Automation __________________________________13
    [Show full text]
  • ENTERPRISE RESOURCE PLANNING Copyright © 2011 Y
    www.lpude.in DIRECTORATE OF DISTANCE EDUCATION ENTERPRISE RESOURCE PLANNING Copyright © 2011 Y. Venugopala Rao All rights reserved Produced & Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Directorate of Distance Education Lovely Professional University Phagwara Directorate of Distance Education LPU is reaching out to the masses by providing an intellectual learning environment that is academically rich with the most affordable fee structure. Supported by the largest University1 in the country, LPU, the Directorate of Distance Education (DDE) is bridging the gap between education and the education seekers at a fast pace, through the usage of technology which significantly extends the reach and quality of education. DDE aims at making Distance Education a credible and valued mode of learning by providing education without a compromise. DDE is a young and dynamic wing of the University, filled with energy, enthusiasm, compassion and concern. Its team strives hard to meet the demands of the industry, to ensure quality in curriculum, teaching methodology, examination and evaluation system, and to provide the best of student services to its students. DDE is proud of its values, by virtue of which, it ensures to make an impact on the education system and its learners. Through affordable education, online resources and a network of Study Centres, DDE intends to reach the unreached. 1 in terms of no. of students in a single campus SYLLABUS Enterprise Resource Planning Objectives: The objective of ERP is: l To provide the real time information. l To enrich students with concepts and knowledge of ERP. l To prepare them to become knowledgeable ERP user professionals suitable to Industry and Information Technology Companies.
    [Show full text]