<<

3/12/2018

Semantic Web Services SS 2018

Web Science

Anna Fensel 12.03.2018

© Copyright 2010 Dieter Fensel and Ioan Toma, updated by Anna Fensel in 2016‐2018 1

Where are we?

# Title 1 Introduction 2 + Cathy O’Neil’s talk: “Weapons of Math Destruction” 3 Service Science 4 Web services 5 Web2.0 services 6 7 Stack (WSMO, WSML, WSMX) 8 OWL-S and the others 9 Semantic Services as a Part of the Future and Big Data Technology 10 Lightweight Annotations 11 Linked Services 12 Applications 13 Mobile Services

2

1 3/12/2018

Outline

• Motivation • Web Science • Web Evolution – Web 1.0 – Traditional Web – Web 2.0 – • Major breakthroughs of Web 2.0 – Web 3.0 – Semantic Web • What Web Science could be – The of the 21st century – Extension to Data Science • Summary • References

3

MOTIVATION

4

2 3/12/2018

Motivation

The Web Today

http://www.youtube.com/watch?v=6gmP4nk0EOE

5

Motivation

“[…] As the Web has grown in complexity and the number and types of interactions that take place have ballooned, it remains the case that we know more about some complex natural phenomena (the obvious example is the human genome) than we do about this particular engineered one.”

A Framework for Web Science T. Berners-Lee and W. Hall and J. A. Hendler and K. O'Hara and N. Shadbolt and D. J. Weitzner Foundations and Trends® in Web Science 1 (2006)

A new science that studies the complex phenomena called Web is needed!!

6

3 3/12/2018

WEB SCIENCE

7

Web Science definition

A new science that focuses on how huge decentralized Web systems work.

“The Web isn’t about what you can do with computers. It’s people and, yes, they are connected by computers. But computer science, as the study of what happens in a computer, doesn’t tell you about what happens on the Web.” Tim Berners-Lee

“A new field of science that involves a multi-disciplinary study and inquiry for the understanding of the Web and its relationships to us” Bebo White, SLAC, Stanford University

Shift from how a single computer works to how huge decentralized Web systems work

8

4 3/12/2018

Endorsements for Web Science

“Web science represents a pretty big next step in the evolution of information. This kind of research likely to have a lot of influence on the next generation of researchers, scientists and, most importantly, the next generation of entrepreneurs who will build new companies from this.” Eric E. Schmidt, CEO Google (2011-2015)

“Web science research is a prerequisite to designing and building the kinds of complex, human-oriented systems that we are after in services science.” Irving Wladawsky-Berger, IBM

9

Web science – multi-disciplinary approach

http://webscience.org/images/collide.jpg 10

5 3/12/2018

The Goals of Web Science

• To understand what the Web is • To engineer the Web’s future and providing infrastructure • To ensure the Web’s social benefit

11

Scientific method

• Natural Sciences such as physics, chemistry, etc. are analytic disciplines that aim to find laws that generate or explain observed phenomena • Computer Science on the other hand is synthetic. It is about creating formalisms and algorithms in order to support particular desired behaviour.

• Web science scientific method has to be a combination of these two paradigms

12

6 3/12/2018

What Could Scientific Theories for the Web Look Like?

• Some simple examples: – Every page on the Web can be reached by following less than 10 links – The average number of words per search query is greater than 3 – Web page download times follow a lognormal distribution function (Huberman) – The Web is a “scale-free” graph • Can these statements be easily validated? Are they good theories? What constitutes good theories about the Web?

http://webcast.bibalex.org/Presentations/Bebo91108.ppt 13

Food For Thought

Electricity : 1800 Electricity Now

What are the analogies for Web Science and Design? Is our understanding of the Web like that of 1800 electricity?

http://webcast.bibalex.org/Presentations/Bebo91108.ppt 14

7 3/12/2018

In the rest of this lecture

• Web Evolution – Web 1.0 - Traditional Web – Web 2.0 – Social Web – Web 3.0 - Semantic Web

• Future steps to realize Web science – Large scale reasoning – Rethinking Computer Science for the 21st century

15

WEB 1.0 – TRADITIONAL WEB

16

8 3/12/2018

Web 1.0

More than a 2 billion users more than 50 billion pages

Static WWW URI, HTML, HTTP

17

Web 1.0

• The ("WWW" or simply the "Web") is a system of interlinked, documents that runs over the Internet. With a , a user views Web pages that may contain text, images, and other multimedia and navigates between them using . - wikipedia • The Web was created around 1990 by Tim Berners-Lee working at CERN in Geneva, Switzerland.

18

9 3/12/2018

Web 1.0

• A distributed document delivery system implemented using application-level protocols on the Internet • A tool for collaborative writing and community building • A framework of protocols that support e-commerce • A network of co-operating computers interoperating using HTTP and related protocols to form a ‘subnet’ of the Internet • A large, cyclical, directed graph made up of Web pages and links

19

WWW Components

• Structural Components – Clients/browsers – to dominant implementations – Servers – run on sophisticated hardware – Caches – many interesting implementations – Internet – the global infrastructure which facilitates data transfer • Language and Protocol Components – Uniform Resource Identifiers (URIs) – Hyper Text Transfer Protocol (HTTP) – Hyper Text Markup Language (HTML)

20

10 3/12/2018

Uniform Resource Identifiers (URIs)

• Uniform Resource Identifiers (URIs) are used to name/identify resources on the Web • URIs are pointers to resources to which request methods can be applied to generate potentially different responses • Resource can reside anywhere on the Internet • Most popular form of a URI is the Uniform Resource Locator (URL)

21

Hypertext Transfer Protocol (HTTP)

• Protocol for client/server communication – The heart of the Web – Very simple request/response protocol • Client sends request message, server replies with response message – Provide a way to publish and retrieve HTML pages – Stateless – Relies on URI naming mechanism

22

11 3/12/2018

HTTP Request Messages

• GET – retrieve document specified by URL • PUT – store specified document under given URL • HEAD – retrieve info. about document specified by URL • OPTIONS – retrieve information about available options • POST – give information (eg. annotation) to the server • DELETE – remove document specified by URL • TRACE – loopback request message • CONNECT – for use by caches

23

HTML

• Hyper-Text Markup Language – A subset of Standardized General Markup Language (SGML) – Facilitates a hyper-media environment • Documents use elements to “mark up” or identify sections of text for different purposes or display characteristics • Mark up elements are not seen by the user when page is displayed • Documents are rendered by browsers

24

12 3/12/2018

HTML

HTML markup consists of several types of entities, including: elements, attributes, data types and character references – DTD (Document Type Definition) • – Element (such as document (…), head elements () – Attribute: HTML – Data type: CDATA, URIs, Dates, Link types, language code, color, text string, etc. – Character references: for referring to rarely used characters: • "水" (in hexadecimal) represents the Chinese character for water

25

WEB 2.0

26

13 3/12/2018

Web 2.0

“Web 2.0 is a notion for a row of interactive and collaborative systems of the internet“

http://widgets-gadgets.com/2006_10_01_archive.html

27

Web 2.0

• Web 2.0 is a vaguely defined phrase referring to various topics such as social networking sites, wikis, communication tools, and . • Tim O'Reilly provided a definition of Web 2.0 in 2006: "Web 2.0 is the business revolution in the computer industry caused by the move to the internet as platform, and an attempt to understand the rules for success on that new platform. Chief among those rules is this: Build applications that harness network effects to get better the more people use them.”

28

14 3/12/2018

Web 2.0

People, Services, Technologies

29

What is the web 2.0? „Definition“ by O‘Reilly

Web 1.0 Web 2.0 improvement

DoubleClick Google AdSense personalized Ofoto Flickr tagging, community Britannica Online Wikipedia community, free content Web sites blogging dialogue publishing participation CMS wikis flexibility, freedom directories tagging community taxonomy

Consumers  Prosumers

30 30

15 3/12/2018

What is the Web 2.0? - Examples

•Gmail • Google Notebooks (Collaborative Notepad in the Web) • Wikis • Wikipedia – Worlds biggest encyclopedia, Top 30 web site, 100 langueges • Del.icio.us (Social Tagging for Bookmarks) • Flickr (Photo Sharing and Tagging) • Blogs, RSS, Blogger.com • Programmableweb.com: 150 web-APIs

31 31

Blogs

• Easy usable user interfaces to update contents

• Easy organization of contents

• Easy usage of contents

• Easy publishing of comments

• Social: collaborative (single users but strongly connected)

32

32 32

16 3/12/2018

Wikis

• Wiki  invented by Ward Cunningham • Collection of HTML sites: read and edit • Most famous and biggest Wiki: Wikipedia (MediaWiki) – But: Also often used in Intranets (i. e. our group) • Problems solved socially instead of technically • Flexible structure • Background algorithms + human intelligence • No new technologies • social: collaborative (nobody owns contents)

33 33

Wikis: Design Principles

• Open Should a page be found to be incomplete or poorly organized, any reader can edit it as they see fit. • Incremental Pages can cite other pages, including pages that have not been written yet. • Organic The structure and text content of the site are open to editing and evolution. • Mundane A small number of (irregular) text conventions will provide access to the most useful page markup. • Universal The mechanisms of editing and organizing are the same as those of writing so that any writer is automatically an editor and organizer. • Overt The formatted (and printed) output will suggest the input required to reproduce it. Source: http://c2.com/cgi/wiki?WikiDesignPrinciples

34 34

17 3/12/2018

Wikis: Design Principles

• Unified Page names will be drawn from a flat space so that no additional context is required to interpret them. • Precise Pages will be titled with sufficient precision to avoid most name clashes, typically by forming noun phrases. • Tolerant Interpretable (even if undesirable) behavior is preferred to error messages. • Observable Activity within the site can be watched and reviewed by any other visitor to the site. • Convergent Duplication can be discouraged or removed by finding and citing similar or related content. Source: http://c2.com/cgi/wiki?WikiDesignPrinciples

35 35

Social Tagging

• Idea: Enrich contents by user chosen keywords

• Replace folder based structure by a organisation using tags

• New: Simple user interfaces for tagging and based search

• First steps to Semantic Web?

• Technically: user interfaces

• Social: collaborative (own contents, shared tags)

36 36

18 3/12/2018

Collaborative Tagging

37

Collaborative Tagging: Delicious

• Browser plug-ins available from http://del.icio.us • Allows the tagging of bookmarks • Community aspect: – Suggestion of tags that were used by other users – Availability of tag clouds for bookmarks of the whole community – Possibility to browse related bookmarks based on tags

38

19 3/12/2018

Tagging: Flickr.com

39 39

Folksonomies

Data created by tagging, knowledge structures

User Tag Resource

Tag Resource User Tag Resource

Tag Resource User Tag Resource

Mary tags www.wikipedia.org with wiki wikipedia encyclopedia

40 40

20 3/12/2018

Tag Clouds

Size of Tags: count of usage

Browsing replaces Searching

Different meaning for different users

Orientation in Information Set

41 41

Major breakthroughs of Web 2.0

The four major breakthroughs of Web 2.0 are: 1. Blurring the distinction between content consumers and content providers. 2. Moving from media for individuals towards media for communities. 3. Blurring the distinction between service consumers and service providers. 4. Integrating human and machine computing in a new way.

42

21 3/12/2018

Blurring the distinction between content consumers and providers

Interactive Web applications through asynchronous JavaScript and XML (AJAX)

43

Blurring the distinction between content consumers and providers

Interactive Web applications through asynchronous JavaScript and XML (AJAX)

44

22 3/12/2018

Blurring the distinction between content consumers and providers:

Weblogs or Blogs, Wikis

45

Blurring the distinction between content consumers and providers:

Flickr, YouTube

46

23 3/12/2018

Blurring the distinction between content consumers and providers

Tagging – del.icio.us, shazam.com

47

Blurring the distinction between content consumers and providers

RDFA, micro formats

48

24 3/12/2018

Moving from a media for individuals towards a media for communities

Folksomonies, FOAF

49

Moving from a media for individuals towards a media for communities

Community pages (friend-of-a-friend, flickr, LinkedIn, myspace, Facebook…)

50

25 3/12/2018

Moving from a media for individuals towards a media for communities

Second Life

51

Moving from a media for individuals towards a media for communities

Wikipedia

52

26 3/12/2018

Moving from a media for individuals towards a media for communities

Wikipedia

53

Blurring the distinction between service consumers and service providers

RSS feeds

54

27 3/12/2018

Blurring the distinction between service consumers and service providers

Yahoo pipes allow people to connect internet data sources, process them, and redirect the output.

55

Blurring the distinction between service consumers and service providers

Widgets, gadgets, and mashups.

56

28 3/12/2018

Integrating human and machine computing in a new way

Amazon Mechanical turk

57

SEMANTIC WEB

58

29 3/12/2018

From Web to Semantic Web

Semantic Web Static WWW URI, HTML, HTTP RDF, RDF(S), OWL

59

Semantic Web

• If the Web is about the global networking of data through URL, HTML, and HTTP…

• … the Semantic Web is about the global networking of knowledge through URI, RDF, and SPARQL

• This knowledge can be an annotation of Web data (this picture depicts Innsbruck) or just for knowledge‘s sake (Innsbruck is a city in Austria)

60

30 3/12/2018

Semantic Web

• URIs are used to identify resources, not just things that exists on the Web, e.g. Sir Tim Berners-Lee

• RDF is used to make statements about resources in the form of triples

• With RDFS, resources can belong to classes (my Mercedes belongs to the class of cars) and classes can be subclasses or superclasses of other classes (vehicles are a superclass of cars, cabriolets are a subclass of cars)

61

Semantic Web Architecture

• Give URIs to concepts - Each URI identifies one concept. • Share these symbols between many languages • Support URI lookup

62

31 3/12/2018

The Semantic Web layer cake

63

URI and XML

• Uniform Resource Identifier (URI) is the dual of URL on Semantic Web – It’s purpose is to indentify resources

• eXtensible Markup Language (XML) is a markup language used to structure information – Fundament of data representation on the Semantic Web – Tags do not convey semantic information

64

32 3/12/2018

RDF and OWL

• Resource Description Framework (RDF) is the dual of HTML in the Semantic Web – Simple way to describe resources on the Web – Sort of simple ontology language (RDF-S) – Based on triples (subject; predicate; object) – Serialization is XML based

• Ontology Web Language (OWL) a layered language based on DL – More complex ontology language – Overcome some RDF(S) limitations

65

SPARQL and Rule languages

•SPARQL – Query language for RDF triples – A protocol for querying RDF data over the Web

• Rule languages (e.g. SWRL) – Extend basic predicates in ontology languages with proprietary predicates – Based on different logics • • Logic Programming

66

33 3/12/2018

Semantic Web • KIM Browser Plugin Web content is annotated using ontologies Content can be searched and browsed intelligently

Select one or more concepts from the ontology… … send the currently loaded web page to the Annotation Server

Annotated Content

67

Semantic Web

Dereferencable Disco Browser URI navigating the Semantic Web as an unbound set of data sources

68

34 3/12/2018

Semantic Web Faceted DBLP uses the keywords provided in annotations to automatically create light-weight topic categorization

69

Semantic Web

70

35 3/12/2018

WEB EVOLUTION - SUMMARY

71

Web Evolution - summary

Web 1.0 Web 2.0 Semantic Web

Personal Websites Blogs Semantic Blogs: semiBlog, Haystack, Semblog, Structured Blogging

Content Management Systems, Wikis, Wikipedia Semantic Wikis: Semantic MediaWiki, SemperWiki, Britannica Online Platypus, , Rhizome

Altavista, Google Google Personalised, : SWSE, Swoogle, Intellidimension DumbFind, Hakia

CiteSeer, Project Gutenberg Google Scholar, Book Search Semantic Digital Libraries: JeromeDL, BRICKS, Longwell

Message Boards Community Portals Semantic Forums and Community Portals: SIOC, OpenLink

Buddy Lists, Address Books Online Social Networks Semantic Social Networks: FOAF, PeopleAggregator

… … Semantic Social Information Spaces: Nepomuk, Gnowsis

72

36 3/12/2018

Web Evolution - summary

• Traditional Web (Web1.0) – Normal User: browsing – Communication style: one-direction communication (e.g. reading a book) – Data: web data (string and syntactic format) – Data contributor: webmaster or experienced user – How to add data: compose HTML pages • Social Web (Web2.0) – Normal User: browsing + publishing and organizing web data – Communication style: human-human (sharing) – Data: web data + tags – Data contributor: normal user – revolution! – How to add data: tagging • Semantic Web – Normal User: interacting (human-machine) – Communication style: humanmachine – Data: web data + tags + metadata (in SW Language) – Data contributor: normal user, machine – How to add data: machine generate or user publish

73

WHAT WEB SCIENCE COULD BE

74

37 3/12/2018

Web principles

In the context of the traditional Web (Web 1.0) a set of principles were proposed: • are identified by URI (Universal Resource Identifier) • Namespaces should be used to denote consistent information spaces • Make use of HTML, XML and other W3C Web technology recommendations, as well as the decentralization of resources

75

Web 1.0 + = Semantic Web

• The traditional Web represents information using – natural language (English, German, Italian,…) – graphics, multimedia, page layout • Humans can process this easily – can deduce facts from partial information – can create mental associations – are used to various sensory information

76

38 3/12/2018

Web 1.0 + semantics = Semantic Web

• However…. Machines are ignorant! – partial information is unusable – difficult to make sense from, e.g., an image – drawing analogies automatically is difficult – difficult to combine information automatically • is same as ? • how to combine different XML hierarchies? –…

77

Semantic Web

• Semantic Web is about applying semantics to the tradition Web, Web 1.0 • Some of the benefits of Semantic Web: – More precise queries – Smarter apps with less work – Share & link data between apps – Information has machine-processable and machine-understandable semantics

78

39 3/12/2018

Limitations of applying semantics to traditional Web

• The principal limits of describing large, heterogeneous, and distributed systems • The principal limits of self representation and self reflection

 Necessitates incompleteness and incorrectness of semantic descriptions.

79

Limitations of applying semantics to traditional Web

The principal limits of describing large, heterogeneous, and distributed systems

80

40 3/12/2018

Limitations of applying semantics to traditional Web

The principal limits of self representation and self reflection

81

Limitations of applying semantics to traditional Web

The principal limits of self representation and self reflection

82

41 3/12/2018

Limitations of applying semantics to traditional Web

The principal limits of self representation and self reflection

Meta Layer (encodes heuristics, i.e. strategic knowledge)

Introspection Reflection

Object Layer (encodes possible complete reasoning knowledge for the problem)

83

Limitations of applying semantics to traditional Web

• The meta layer should apply heuristics that may help – Speed up the overall reasoning process. – Increase its flexibility. • Therefore, it needs to be incomplete in various aspects and resemble important aspects of our consciousness. – Introspection – Reflection • Unbounded rationality, constrained rationality, limited rationality.

84

42 3/12/2018

Limitations of applying semantics to traditional Web

• Description of data by metadata or programs by metaprograms – Always larger (even infinitely large) … – … or always an approximation

85

Data look-up on the Web

• In a large, distributed, and heterogeneous environment, classical ACID (Atomicity, Consistency, Isolation, Durability) guarantees of the world no longer scale in any sense.

• Even a simple read operation in an environment such as the Web, a peer-to-peer storage network, a set of distributed repositories, or a space, cannot guarantee completeness in the sense of assuming that if data was not returned, then it was not there.

• Similarly, a write can also not guarantee a consistent state that it is immediately replicated to all the storage facilities at once.

86

43 3/12/2018

Information retrieval on the Web

• Modern information retrieval applies the same principles – In information retrieval, the notion of completeness (recall) becomes more and more meaningless in the context of Web scale information infrastructures. – It is very unlikely that a user requests all the information relevant to a certain topic that exists on a worldwide scale, since this could easily go far beyond the amount of information processing he or she is investing in achieving a certain goal. – Therefore, instead of investigating the full space of precision and recall, information retrieval is starting to focus more around improving precision and proper ranking of results.

87

Reasoning on the Web

• What holds for a simple data look-up holds in an even stronger sense for reasoning on Web scale.

• The notion of 100% completeness and correctness as usually assumed in logic-based reasoning does not even make sense anymore since the underlying fact base is changing faster than any reasoning process can process it.

• Therefore, we have to develop a notion of usability of inferred results and relate them with the resources that are requested for it.

88

44 3/12/2018

Reasoning on the Web

Semantic Web

Logic precision (soundness) IR recall (completeness)

89

LarKC – The Large Knowledge Collider

• LarKC – The Large Knowledge Collider http://larkc.sti2.at/

• An open source, modular, and distributed platform for inference on the Web that makes use of new reasoning techniques

• A plug-in architecture that supports cooperation between distributed, heterogeneous, cooperating modules enabling research into new and different reasoning techniques

90

45 3/12/2018

LarKC – The Large Knowledge Collider

•E •Px r t o •Er nb •Ra oa •Rce ub elt gi leI hl evn •A platform for infinitely scalable ai vaf ns aon st ntr wi tSm ec reasoning on the data-web Poa rI rut sn ori ?f bco e •Elen r •Cesn oe •Ram un els gc •Rlc he T eu I •Cc • First real attempt at Reasoning at a r lv DdRS el a ea e ra n vnt cnal ts s ate itse as Web scale f nSC dioc i o to efnt nf r Mna y ti m et yc tei ?a hsn t •Eot ni •Rdi o esc un •Rls •Cg • Not just adding a Web syntax to •Te ho lvr en ea ft vn fe reasoning, but reflecting on the ats ox nCf rt to tr Dnr /e underlying assumptions of reasoning atm ca te os axo so tL tn o and the Web g?i n i g c – Bringing Web principles to reasoning – Bringing reasoning to the Web

• Thus LarKC is true Web Science

91

LarKC – The Large Knowledge Collider

• A number of broken assumptions of reasoning and logic in a Web context: – The Web is small – The Web does not change – The Web does not contradict itself

• In fact: – The Web is huge – The Web changes faster than we can reason over it – The Web contains contradictions and different points of view

• The essence of the web (search) must be included into the reasoning process, generating something new called reasearch

• After 4000 years of separation LarKC merges induction and deduction

92

46 3/12/2018

WEB SCIENCE – THE COMPUTER SCIENCE OF THE 21st CENTURY

93

Web Science – The Computer Science of the 21st Century

• With the Web we have an open, heterogeneous, distributed, and fast changing computing environment.

• Therefore we need computing to be understood as –A goal driven approach where the solution process is only partially determined and actually decided during runtime, based on available data and services. –A heuristic approach that gives up on absolute notion of completeness and correctness in order to gain scalability.

• The times of 100% complete and correct solutions are gone.

94

47 3/12/2018

Web Science – The Computer Science of the 21st Century

The Need for Trade-offs: • In all areas one has to define the trade-off between the guarantees one provides in terms of service level agreements. Completeness and correctness are just examples of some very strong guarantees and what this requires in terms of assumptions, and computational complexity.

• Different heuristic problem solving approaches are just different combinations of these three factors.

95

Web Science – The Computer Science of the 21st Century

• Service level agreements (or goals) define what has to be provided as result of solving a problem.

• Do we request an optimal solution, a semi-optimal solution, or just any solution?

96

48 3/12/2018

Web Science – The Computer Science of the 21st Century

• Assumptions describe the generality of the problem solving approach: – Assuming that there is only one solution allows stopping the search for an optimum immediately after a solution has been found. – Instead of a global optimization method, a much simpler heuristic search method can be used in this case, which would still deliver a global optimum.

• Computational complexity (scalability) or the resources that are required to fill the gap between the assumptions and the goals.

97

Web Science – The Computer Science of the 21st Century

• Computer science in the 20th century was about perfect solutions in closed domains and applications.

• Web science, the new computer science of the 21st century, will be about approximate solutions and frameworks that capture the relationships of partial solutions and requirements in terms of computational costs, i.e., the proper balance of their ratio.

98

49 3/12/2018

Web Science – The Computer Science of the 21st Century

• This shift is comparable to the transition in physics, from classical physics to relativity theory and quantum mechanics, • ...where the notion of absolute space and time is replaced by relativistic notions and the principle limits of precision. • the more precisely we know about the location of a particle in space, the less we know about its movement in time and vice versa.

? ?

? ?

99

Data Science

• As the Web gets to consist primarily of (structured) data, Data Science gets to take some functions of Web Science.

• “Data science, also known as data-driven science, is an interdisciplinary field of scientific methods, processes, algorithms and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to .” - Wikipedia

100

50 3/12/2018

Data science process flowchart from "Doing Data Science", Cathy O'Neil and Rachel Schutt, 2013

101

Current Data Science Challenges…

• …include human bias in design of algorithms, insufficient transparency, non-compliance to laws and ethics in algorithms, leading to semantically wrong decisions, often with massive negative impacts.

• See more details and examples at:

• https://www.youtube.com/watch?v=TQHs8SA1qpk

102

51 3/12/2018

Summary

• The Web is a in an extending success story with over more than a 2 billion users more than 50 billion pages. (*) • There is a need for a new science that focuses on how huge decentralized Web systems work - Web Science. • Semantics will play a central role in the future development of the Web. • However there are limitations of applying semantics to traditional Web due to the principal limits of self representation and self reflection. • Limitations should be addressed by considering 2 levels: meta layer and object layer. • Meta layer should apply heuristics that may help speed up the overall reasoning process and increase its flexibility. • Introspection and Reflection can be used to move from one layer to the other. (*) Rough estimate, source: Shroff, G. (2013). The Intelligent Web: Search, smart algorithms, and big data. OUP Oxford. 103

References

• Mandatory reading: – T. Berners-Lee, W. Hall, J. Hendler, N. Shadbolt, D. Weitzner (2006): Creating a science of the Web. http://eprints.ecs.soton.ac.uk/12615/ – T. Berners-Lee, W. Hall, J. Hendler, K. O’Hara, N. Shadbolt, D. Weitzner (2006): A Framework for Web Science. http://eprints.ecs.soton.ac.uk/13347/ – D. Fensel, Dieter F. van Harmelen. Unifying Reasoning and Search to Web Scale, IEEE Internet Computing, 11(2), 2007 – D. Fensel, D. Wolf: The Scientific Role of Computer Science in the 21st Century. In Proceedings of the third International Workshop on Philosophy and Informatics (WSPI 2006), Saarbruecken, Germany, May 3-4, 2006. – Cathy O’Neil: “Weapons of Math Destruction” (2016): https://www.youtube.com/watch?v=TQHs8SA1qpk

104

52 3/12/2018

References

• Further reading: – D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham E. Della Valle, F. Fischer, Z. Huang, A. Kiryakov and T. Kyung-il Lee, L. School,V. Tresp, S. Wesner, M. Witbrock and N. Zhong, Towards LarKC: a Platform for Web-scale ReasoningIEEE Computer Society Press Los Alamitos, CA, USA, 2008. – F. Fischer, G. Unel, B. Bishop and D. Fensel, Towards a scalable, pragmatic Knowledge Representation Language for the Web, 2009.

105

References

• Wikipedia and other links: – http://en.wikipedia.org/wiki/Web_of_Science – http://en.wikipedia.org/wiki/Web_2.0 – http://en.wikipedia.org/wiki/Semantic_Web – Web Science Research Initiative http://webscience.org/ – LarKC: http://larkc.sti2.at – Benchmark Council: http://www.ldbcouncil.org/ – https://de.wikipedia.org/wiki/Data_Science

106

53 3/12/2018

Next Lecture

# Title 1 Introduction 2 Web Science + Cathy O’Neil’s talk: “Weapons of Math Destruction” 3 Service Science 4 Web services 5 Web2.0 services 6 Semantic Web 7 Semantic Web Service Stack (WSMO, WSML, WSMX) 8 OWL-S and the others 9 Semantic Services as a Part of the Future Internet and Big Data Technology 10 Lightweight Annotations 11 Linked Services 12 Applications 13 Mobile Services

107

Questions?

108

54