Quarrying Dataspaces: Schemaless Profiling of Unfamiliar Information Sources Bill Howe#1 David Maier∗2 Nicolas Rayner∗3 James Rucker∗4 #Oregon Health & Science University, Center for Coastal Margin Observation and Prediction 20000 NW Walker Road, Beaverton, Oregon
[email protected] ∗Portland State University, Department of Computer Science 1900 SW 4th Avenue, Portland, Oregon
[email protected] [email protected] [email protected] Abstract— Traditional data integration and analysis ap- existing applications and domain knowledge must be brought proaches tend to assume intimate familiarity with the structure, to bear to understand a source sufficiently to adapt it to semantics, and capabilities of the available information sources new needs. Our interest is dataspace profiling, analogous to before applicable tools can be used effectively. This assumption often does not hold in practice. We introduce dataspace profiling database profiling, which Marshall defines as “the process of as the cardinal activity when beginning a project in an unfamiliar analyzing a database to determine its structure and internal dataspace. Dataspace profiling is an analysis of the structures relationships” [8]. However, most database profiling tools and properties exposed by an information source, allowing 1) assume a starting point of relational data with a domain- assessment of the utility and importance of the information specific schema. In dataspace settings, however, the starting source as a whole, 2) assessment of compatibility with the services of a dataspace support platform, and 3) determination point may have no a priori schema, or only a generic one. and externalization of structure in preparation for specific data An example of the former is collections of entity-property- applications.