A Distributional Semantic Search Infrastructure for Linked Dataspaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index
University of California Santa Barbara A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index A Thesis submitted in partial satisfaction of the requirements for the degree Master of Arts in Geography by Bo Yan Committee in charge: Professor Krzysztof Janowicz, Chair Professor Werner Kuhn Professor Emerita Helen Couclelis June 2016 The Thesis of Bo Yan is approved. Professor Werner Kuhn Professor Emerita Helen Couclelis Professor Krzysztof Janowicz, Committee Chair May 2016 A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index Copyright c 2016 by Bo Yan iii Acknowledgements I would like to thank the members of my committee for their guidance and patience in the face of obstacles over the course of my research. I would like to thank my advisor, Krzysztof Janowicz, for his invaluable input on my work. Without his help and encour- agement, I would not have been able to find the light at the end of the tunnel during the last stage of the work. Because he provided insight that helped me think out of the box. There is no better advisor. I would like to thank Yingjie Hu who has offered me numer- ous feedback, suggestions and inspirations on my thesis topic. I would like to thank all my other intelligent colleagues in the STKO lab and the Geography Department { those who have moved on and started anew, those who are still in the quagmire, and those who have just begun { for their support and friendship. Last, but most importantly, I would like to thank my parents for their unconditional love. -
Towards Ontology Based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout
Towards ontology based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout To cite this version: Sophea Chhun, Néjib Moalla, Yacine Ouzrout. Towards ontology based BPMN Implementation.. SKIMA, 6th Conference on Software Knowledge Information Management and Applications., Jan 2012, Chengdu, China. 8 p. hal-01551452 HAL Id: hal-01551452 https://hal.archives-ouvertes.fr/hal-01551452 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Towards ontology based BPMN implementation CHHUN Sophea, MOALLA Néjib and OUZROUT Yacine University of Lumiere Lyon2, laboratory DISP, France Natural language is understandable by human and not machine. None technical persons can only use natural language to specify their business requirements. However, the current version of Business process management and notation (BPMN) tools do not allow business analysts to implement their business processes without having technical skills. BPMN tool is a tool that allows users to design and implement the business processes by connecting different business tasks and rules together. The tools do not provide automatic implementation of business tasks from users’ specifications in natural language (NL). Therefore, this research aims to propose a framework to automatically implement the business processes that are expressed in NL requirements. -
QUERY-DRIVEN TEXT ANALYTICS for KNOWLEDGE EXTRACTION, RESOLUTION, and INFERENCE by CHRISTAN EARL GRANT a DISSERTATION PRESENTED
QUERY-DRIVEN TEXT ANALYTICS FOR KNOWLEDGE EXTRACTION, RESOLUTION, AND INFERENCE By CHRISTAN EARL GRANT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 c 2015 Christan Earl Grant To Jesus my Savior, Vanisia my wife, my daughter Caliah, soon to be born son and my parents and siblings, whom I strive to impress. Also, to all my brothers and sisters battling injustice while I battled bugs and deadlines. ACKNOWLEDGMENTS I had an opportunity to see my dad, a software engineer from Jamaica work extremely hard to get a master's degree and work as a software engineer. I even had the privilege of sitting in some of his classes as he taught at a local university. Watching my dad work towards intellectual endeavors made me believe that anything is possible. I am extremely privileged to have someone I could look up to as an example of being a man, father, and scholar. I had my first taste of research when Dr. Joachim Hammer went out of his way to find a task for me on one of his research projects because I was interested in attending graduate school. After working with the team for a few weeks he was willing to give me increased responsibility | he let me attend the 2006 SIGMOD Conference in Chicago. It was at this that my eyes were opened to the world of database research. As an early graduate student Dr. Joseph Wilson exercised superhuman patience with me as I learned to grasp the fundamentals of paper writing. -
Usage-Dependent Maintenance of Structured Web Data Sets
Usage-dependent maintenance of structured Web data sets Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat) am Institut f¨urInformatik des Fachbereichs Mathematik und Informatik der Freien Unviersit¨atBerlin vorgelegt von Dipl. Inform. Markus Luczak-R¨osch Berlin, August 2013 Referent: Prof. Dr.-Ing. Robert Tolksdorf (Freie Universit¨atBerlin) Erste Korreferentin: Natalya F. Noy, PhD (Stanford University) Zweite Korreferentin: Dr. rer. nat. Elena Simperl (University of Southampton) Tag der Disputation: 13.01.2014 To Johanna. To Levi, Yael and Mili. Vielen Dank, dass ich durch Euch eine Lebenseinstellung lernen durfte, \. die bereit ist, auf kritische Argumente zu h¨oren und von der Erfahrung zu lernen. Es ist im Grunde eine Einstellung, die zugibt, daß ich mich irren kann, daß Du Recht haben kannst und daß wir zusammen vielleicht der Wahrheit auf die Spur kommen." { Karl Popper Abstract The Web of Data is the current shape of the Semantic Web that gained momentum outside of the research community and becomes publicly visible. It is a matter of fact that the Web of Data does not fully exploit the primarily intended technology stack. Instead, the so called Linked Data design issues [BL06], which are the basis for the Web of Data, rely on the much more lightweight technologies. Openly avail- able structured Web data sets are at the beginning of being used in real-world applications. The Linked Data research community investigates the overall goal to approach the Web-scale data integration problem in a way that distributes efforts between three contributing stakeholders on the Web of Data { the data publishers, the data consumers, and third parties. -
Semantic Computing
SEMANTIC COMPUTING Lecture 7: Introduction to Distributional and Distributed Semantics Dagmar Gromann International Center For Computational Logic TU Dresden, 30 November 2018 Overview • Distributional Semantics • Distributed Semantics – Word Embeddings Dagmar Gromann, 30 November 2018 Semantic Computing 2 Distributional Semantics Dagmar Gromann, 30 November 2018 Semantic Computing 3 Distributional Semantics Definition • meaning of a word is the set of contexts in which it occurs • no other information is used than the corpus-derived information about word distribution in contexts (co-occurrence information of words) • semantic similarity can be inferred from proximity in contexts • At the very core: Distributional Hypothesis Distributional Hypothesis “similarity of meaning correlates with similarity of distribution” - Harris Z. S. (1954) “Distributional structure". Word, Vol. 10, No. 2-3, pp. 146-162 meaning = use = distribution in context => semantic distance Dagmar Gromann, 30 November 2018 Semantic Computing 4 Remember Lecture 1? Types of Word Meaning • Encyclopaedic meaning: words provide access to a large inventory of structured knowledge (world knowledge) • Denotational meaning: reference of a word to object/concept or its “dictionary definition” (signifier <-> signified) • Connotative meaning: word meaning is understood by its cultural or emotional association (positive, negative, neutral conntation; e.g. “She’s a dragon” in Chinese and English) • Conceptual meaning: word meaning is associated with the mental concepts it gives access to (e.g. prototype theory) • Distributional meaning: “You shall know a word by the company it keeps” (J.R. Firth 1957: 11) John Rupert Firth (1957). "A synopsis of linguistic theory 1930-1955." In Special Volume of the Philological Society. Oxford: Oxford University Press. Dagmar Gromann, 30 November 2018 Semantic Computing 5 Distributional Hypothesis in Practice Study by McDonald and Ramscar (2001): • The man poured from a balack into a handleless cup. -
Harnessing the Power of Folksonomies for Formal Ontology Matching On-The-Fly
Edinburgh Research Explorer Harnessing the power of folksonomies for formal ontology matching on the fly Citation for published version: Togia, T, McNeill, F & Bundy, A 2010, Harnessing the power of folksonomies for formal ontology matching on the fly. in Proceedings of the ISWC workshop on Ontology Matching. <http://ceur-ws.org/Vol- 689/om2010_poster4.pdf> Link: Link to publication record in Edinburgh Research Explorer Document Version: Early version, also known as pre-print Published In: Proceedings of the ISWC workshop on Ontology Matching General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 Harnessing the power of folksonomies for formal ontology matching on-the-y Theodosia Togia, Fiona McNeill and Alan Bundy School of Informatics, University of Edinburgh, EH8 9LE, Scotland Abstract. This paper is a short introduction to our work on build- ing and using folksonomies to facilitate communication between Seman- tic Web agents with disparate ontological representations. We briey present the Semantic Matcher, a system that measures the semantic proximity between terms in interacting agents' ontologies at run-time, fully automatically and minimally: that is, only for semantic mismatches that impede communication. -
A Comparison of Word Embeddings and N-Gram Models for Dbpedia Type and Invalid Entity Detection †
information Article A Comparison of Word Embeddings and N-gram Models for DBpedia Type and Invalid Entity Detection † Hanqing Zhou *, Amal Zouaq and Diana Inkpen School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada; [email protected] (A.Z.); [email protected] (D.I.) * Correspondence: [email protected]; Tel.: +1-613-562-5800 † This paper is an extended version of our conference paper: Hanqing Zhou, Amal Zouaq, and Diana Inkpen. DBpedia Entity Type Detection using Entity Embeddings and N-Gram Models. In Proceedings of the International Conference on Knowledge Engineering and Semantic Web (KESW 2017), Szczecin, Poland, 8–10 November 2017, pp. 309–322. Received: 6 November 2018; Accepted: 20 December 2018; Published: 25 December 2018 Abstract: This article presents and evaluates a method for the detection of DBpedia types and entities that can be used for knowledge base completion and maintenance. This method compares entity embeddings with traditional N-gram models coupled with clustering and classification. We tackle two challenges: (a) the detection of entity types, which can be used to detect invalid DBpedia types and assign DBpedia types for type-less entities; and (b) the detection of invalid entities in the resource description of a DBpedia entity. Our results show that entity embeddings outperform n-gram models for type and entity detection and can contribute to the improvement of DBpedia’s quality, maintenance, and evolution. Keywords: semantic web; DBpedia; entity embedding; n-grams; type identification; entity identification; data mining; machine learning 1. Introduction The Semantic Web is defined by Berners-Lee et al. -
Distributional Semantics
Distributional Semantics Computational Linguistics: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM YOAV GOLDBERG AND OMER LEVY Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 1 / 19 j j From Distributional to Distributed Semantics The new kid on the block Deep learning / neural networks “Distributed” word representations Feed text into neural-net. Get back “word embeddings”. Each word is represented as a low-dimensional vector. Vectors capture “semantics” word2vec (Mikolov et al) Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 2 / 19 j j From Distributional to Distributed Semantics This part of the talk word2vec as a black box a peek inside the black box relation between word-embeddings and the distributional representation tailoring word embeddings to your needs using word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 3 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 4 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 5 / 19 j j word2vec dog cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig sheep cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock november october, december, april, june, february, july, september, january, august, march jerusalem tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed teva pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 6 / 19 j j Working with Dense Vectors Word Similarity Similarity is calculated using cosine similarity: dog~ cat~ sim(dog~ ,cat~ ) = dog~ · cat~ jj jj jj jj For normalized vectors ( x = 1), this is equivalent to a dot product: jj jj sim(dog~ ,cat~ ) = dog~ cat~ · Normalize the vectors when loading them. -
L Dataspaces Make Data Ntegration Obsolete?
DBKDA 2011, January 23-28, 2011 – St. Maarten, The Netherlands Antilles DBKDA 2011 Panel Discussion: Will Dataspaces Make Data Integration Obsolete? Moderator: Fritz Laux, Reutlingen Univ., Germany Panelists: Kazuko Takahashi, Kwansei Gakuin Univ., Japan Lena Strömbäck, Linköping Univ., Sweden Nipun Agarwal, Oracle Corp., USA Christopher Ireland, The Open Univ., UK Fritz Laux, Reutlingen Univ., Germany DBKDA 2011, January 23-28, 2011 – St. Maarten, The Netherlands Antilles The Dataspace Idea Space of Data Management Scalable Functionality and Costs far Web Search Functionality virtual Organization pay-as-you-go, Enterprise Dataspaces Admin. Portal Schema Proximity Federated first, DBMS DBMS scient. Desktop Repository Search DBMS schemaless, near unstructured high Semantic Integration low Time and Cost adopted from [Franklin, Halvey, Maier, 2005] DBKDA 2011, January 23-28, 2011 – St. Maarten, The Netherlands Antilles Dataspaces (DS) [Franklin, Halevy, Maier, 2005] is a new abstraction for Information Management ● DS are [paraphrasing and commenting Franklin, 2009] – Inclusive ● Deal with all the data of interest, in whatever form => but semantics matters ● We need access to the metadata! ● derive schema from instances? ● Discovering new data sources => The Münchhausen bootstrap problem? Theodor Hosemann (1807-1875) DBKDA 2011, January 23-28, 2011 – St. Maarten, The Netherlands Antilles Dataspaces (DS) [Franklin, Halevy, Maier, 2005] is a new abstraction for Information Management ● DS are [paraphrasing and commenting Franklin, 2009] – Co-existence -
Facing the Facts of Fake: a Distributional Semantics and Corpus Annotation Approach Bert Cappelle, Pascal Denis, Mikaela Keller
Facing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis, Mikaela Keller To cite this version: Bert Cappelle, Pascal Denis, Mikaela Keller. Facing the facts of fake: a distributional semantics and corpus annotation approach. Yearbook of the German Cognitive Linguistics Association, De Gruyter, 2018, 6 (9-42). hal-01959609 HAL Id: hal-01959609 https://hal.archives-ouvertes.fr/hal-01959609 Submitted on 18 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Facing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis and Mikaela Keller Université de Lille, Inria Lille Nord Europe Fake is often considered the textbook example of a so-called ‘privative’ adjective, one which, in other words, allows the proposition that ‘(a) fake x is not (an) x’. This study tests the hypothesis that the contexts of an adjective-noun combination are more different from the contexts of the noun when the adjective is such a ‘privative’ one than when it is an ordinary (subsective) one. We here use ‘embeddings’, that is, dense vector representations based on word co-occurrences in a large corpus, which in our study is the entire English Wikipedia as it was in 2013. -
Learning to Match Ontologies on the Semantic Web
The VLDB Journal manuscript No. (will be inserted by the editor) Learning to Match Ontologies on the Semantic Web AnHai Doan1, Jayant Madhavan2, Robin Dhamankar1, Pedro Domingos2, Alon Halevy2 1 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA fanhai,[email protected] 2 Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA fjayant,pedrod,[email protected] Received: date / Revised version: date Abstract On the Semantic Web, data will inevitably come and much of the potential of the Web has so far remained from many different ontologies, and information processing untapped. across ontologies is not possible without knowing the seman- In response, researchers have created the vision of the Se- tic mappings between them. Manually finding such mappings mantic Web [BLHL01], where data has structure and ontolo- is tedious, error-prone, and clearly not possible at the Web gies describe the semantics of the data. When data is marked scale. Hence, the development of tools to assist in the ontol- up using ontologies, softbots can better understand the se- ogy mapping process is crucial to the success of the Seman- mantics and therefore more intelligently locate and integrate tic Web. We describe GLUE, a system that employs machine data for a wide variety of tasks. The following example illus- learning techniques to find such mappings. Given two on- trates the vision of the Semantic Web. tologies, for each concept in one ontology GLUE finds the most similar concept in the other ontology. We give well- founded probabilistic definitions to several practical similar- Example 1 Suppose you want to find out more about some- ity measures, and show that GLUE can work with all of them. -
Sentiment, Stance and Applications of Distributional Semantics
Sentiment, stance and applications of distributional semantics Maria Skeppstedt Sentiment, stance and applications of distributional semantics Sentiment analysis (opinion mining) • Aims at determining the attitude of the speaker/ writer * In a chunk of text (e.g., a document or sentence) * Towards a certain topic • Categories: * Positive, negative, (neutral) * More detailed Movie reviews • Excruciatingly unfunny and pitifully unromantic. • The picture emerges as a surprisingly anemic disappointment. • A sensitive, insightful and beautifully rendered film. • The spark of special anime magic here is unmistak- able and hard to resist. • Maybe you‘ll be lucky , and there‘ll be a power outage during your screening so you can get your money back. Methods for sentiment analysis • Train a machine learning classifier • Use lexicon and rules • (or combine the methods) Train a machine learning classifier Annotating text and training the model Excruciatingly Excruciatingly unfunny unfunny Applying the model pitifully unromantic. The model pitifully unromantic. Examples of machine learning Frameworks • Scikit-learn • NLTK (natural language toolkit) • CRF++ Methods for sentiment analysis • Train a machine learning classifier * See for instance Socher et al. (2013) that classified English movie review sentences into positive and negative sentiment. * Trained their classifier on 11,855 manually labelled sentences. (R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts, Recursive deep models for semantic composition- ality over a sentiment treebank) Methods based on lexicons and rules • Lexicons for different polarities • Sometimes with different strength on the words * Does not need the large amount of training data that is typically required for machine learning methods * More flexible (e.g, to add new sentiment poles and new languages) Commercial use of sentiment analysis I want to retrieve everything positive and negative that is said about the products I sell.