Pittsburgh City Nature Challenge: Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Pittsburgh City Nature Challenge: Fungi Pittsburgh City Nature Challenge: Fungi Features to capture in photographs What are fungi? What to document Fungi are incredibly diverse and complex Upper surface (cap) organisms that digest their food outside of their Because of the diversity of forms mushrooms take “body” in order to ingest nutrients. They are most on and the physical similarities that different noticeable when they produce their reproductive species can have with each other, carefully structures, known as mushrooms. documenting as many details as possible helps Stem get the best possible identification. Where to look: Fungi can be found almost everywhere, but often © Fluff Berger Pluteus cervinus In spring, the most common types of fungi readily go unnoticed. Forested areas, parks, or gardens found are jelly, crust, cup, shelf, and cap and stem provide great habitat for fungi. Check fallen logs fungi. Photographs of any mushroom will be most or branches, mulch or woodchips, mossy useful if the mushroom fills the frame and is in Lower surface with gills areas, and along streams or creeks. focus. Types of common spring mushrooms: For cap and stem mushrooms and shelf Jelly Fungi Crust Fungi mushrooms, capturing photos of both the upper and lower surface is very helpful. The lower surface is also called the fertile surface and is where microscopic spores develop and are © Fluff Berger Pluteus cervinus released. The photos to the left show important features to highlight in your own observations. Exidia crenata © Fluff Berger Xylobolus frustulatus © Judy Mackenroth Lower surface with pores Other characteristics to note include: • What the mushroom was growing on (soil, Cup Fungi Shelf Fungi wood, etc.) • What tree species are present in the area • Any noticeable odors the mushroom has • The color of the mushroom's spores “en masse”, usually determined through a spore print (most useful for mushrooms that have gills) Sarcoscypha sp © Julie Travaglini Trametes versicolor © Richard Jacob © Walt Sturgeon Neofavolus alveolaris Other Common Spring Mushrooms: Cerioporus squamosus (Dryad’s saddle), Stereum ostrea (false turkey tail), Coprinellus micaceous (mica cap), Trametes cinnabarina (Northern cinnabar polypore),Scizophyllum commune (splitgill mushroom), Morchella americana (yellow morel), Galerina marginata (funeral bell).
Recommended publications
  • 2016-03 Medicinal Mushrooms, Dr. Dodds Article on Seniors
    Sierra Animal Wellness Center Specializing in Holistic, Integrative Veterinary Medicine March , 2016 Clinic Hours In This Issue Medicinal Mushrooms Monday, Thursday and Friday from 9:00 to 6:00 Aging and Senior Dogs Good News on the Dental Front Tuesday from 9:00 to 3:00 Just for Fun Wednesday from 12:00 to 6:00 Subscribe to Our New sletter! Contact Us Quick Links 1506 S. Canyon Way Sierra Animal Wellness Center Colfax, California 95713 Toy Poodles Bred by Bev Enoch, RVT 530-346-6611 Pembroke Welsh Corgis Bred by Peggy Roberts, Fax: 530-346-6699 DVM [email protected] Medicinal Mushrooms The medicinal use of mushrooms in people, dogs and other animals has its origins in Traditional Chinese Medicine (TCM), and is known to date back to at least 100AD. The mushroom is a complex organism that contains several thousand enzymes, nutrients, and proteins in a ratio that offers nutritional benefits. Mushrooms are a fungus that forms a fleshy, above-ground reproductive structure called the "mushroom fruit body." However, the "mushroom fruit body" or the part that you can see - the stem and cap - is less than Turkey Tail (Trametes versicolor) 10 percent of a mushroom's total biomass. One of the most researched The mycelium is the part of the mushroom you don't see or typically eat. It's the part mushrooms for the nutrients that that lies beneath the surface of the soil. And support immune health. it's the part that may hold the most important nutritional benefits of mushrooms. Mycelium cells are constantly battling a hostile environment and to help their survival, have developed highly efficient and proactive immune systems.
    [Show full text]
  • Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
    Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Chemical Compounds from the Kenyan Polypore Trametes Elegans (Spreng:Fr.) Fr (Polyporaceae) and Their Antimicrobial Activity
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 13(4): 2352-2359, August 2019 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Chemical compounds from the Kenyan polypore Trametes elegans (Spreng:Fr.) Fr (Polyporaceae) and their antimicrobial activity Regina Kemunto MAYAKA1, Moses Kiprotich LANGAT2, Alice Wanjiku NJUE1, Peter Kiplagat CHEPLOGOI1 and Josiah Ouma OMOLO1* 1Department of Chemistry, Egerton University, P.O Box 536-20115 Njoro, Kenya. 2Natural Product Chemistry in the Chemical Ecology and In Vitro Group at the Jodrell Laboratory, Kew, Richmond, UK. *Corresponding author; E-mail: [email protected]. ACKNOWLEDGEMENTS The authors are grateful to the Kenya National Research Fund (NRF)-NACOSTI for the financial assistance for the present work. ABSTRACT Over the years, natural products have been used by humans in tackling infectious bacteria and fungi. Higher fungi have potential of containing natural product agents for various diseases. The aim of the study was to characterise the antimicrobial compounds from the polypore Trametes elegans. The dried, ground fruiting bodies of T. elegans were extracted with methanol and solvent removed in a rotary evaporator. The extract was suspended in distilled water, then partitioned using ethyl acetate solvent to obtain an ethyl acetate extract. The extract was fractionated and purified using column chromatographic method and further purification on sephadex LH20. The chemical structures were determined on the basis of NMR spectroscopic data from 1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, and NOESY experiments. Antimicrobial activity against clinically important bacterial and fungal strains was assessed and zones of inhibition were recorded.
    [Show full text]
  • Fungi of the Baldwin Woods Forest Preserve - Rice Tract Based on Surveys Conducted in 2020 by Sherry Kay and Ben Sikes
    Fungi of the Baldwin Woods Forest Preserve - Rice Tract Based on surveys conducted in 2020 by Sherry Kay and Ben Sikes Scientific name Common name Comments Agaricus silvicola Wood Mushroom Allodus podophylli Mayapple Rust Amanita flavoconia group Yellow Patches Amanita vaginata group 4 different taxa Arcyria cinerea Myxomycete (Slime mold) Arcyria sp. Myxomycete (Slime mold) Arcyria denudata Myxomycete (Slime mold) Armillaria mellea group Honey Mushroom Auricularia americana Cloud Ear Biscogniauxia atropunctata Bisporella citrina Yellow Fairy Cups Bjerkandera adusta Smoky Bracket Camarops petersii Dog's Nose Fungus Cantharellus "cibarius" Chanterelle Ceratiomyxa fruticulosa Honeycomb Coral Slime Mold Myxomycete (Slime mold) Cerioporus squamosus Dryad's Saddle Cheimonophyllum candidissimum Class Agaricomycetes Coprinellus radians Orange-mat Coprinus Coprinopsis variegata Scaly Ink Cap Cortinarius alboviolaceus Cortinarius coloratus Crepidotus herbarum Crepidotus mollis Peeling Oysterling Crucibulum laeve Common Bird's Nest Dacryopinax spathularia Fan-shaped Jelly-fungus Daedaleopsis confragosa Thin-walled Maze Polypore Diatrype stigma Common Tarcrust Ductifera pululahuana Jelly Fungus Exidia glandulosa Black Jelly Roll Fuligo septica Dog Vomit Myxomycete (Slime mold) Fuscoporia gilva Mustard Yellow Polypore Galiella rufa Peanut Butter Cup Gymnopus dryophilus Oak-loving Gymnopus Gymnopus spongiosus Gyromitra brunnea Carolina False Morel; Big Red Hapalopilus nidulans Tender Nesting Polypore Hydnochaete olivacea Brown-toothed Crust Hymenochaete
    [Show full text]
  • Fungi Determined in Ankara University Tandoğan Campus Area (Ankara-Turkey)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 20(1): 47-55, 2019 ISSN 2147-0294, e-ISSN 2528-9691 Research Article DOI: 10.23902/trkjnat.521256 FUNGI DETERMINED IN ANKARA UNIVERSITY TANDOĞAN CAMPUS AREA (ANKARA-TURKEY) Ilgaz AKATA1*, Deniz ALTUNTAŞ1, Şanlı KABAKTEPE2 1Ankara University, Faculty of Science, Department of Biology, Ankara, TURKEY 2Turgut Ozal University, Battalgazi Vocational School, Battalgazi, Malatya, TURKEY *Corresponding author: ORCID ID: orcid.org/0000-0002-1731-1302, e-mail: [email protected] Cite this article as: Akata I., Altuntaş D., Kabaktepe Ş. 2019. Fungi Determined in Ankara University Tandoğan Campus Area (Ankara-Turkey). Trakya Univ J Nat Sci, 20(1): 47-55, DOI: 10.23902/trkjnat.521256 Received: 02 February 2019, Accepted: 14 March 2019, Online First: 15 March 2019, Published: 15 April 2019 Abstract: The current study is based on fungi and infected host plant samples collected from Ankara University Tandoğan Campus (Ankara) between 2017 and 2019. As a result of the field and laboratory studies, 148 fungal species were identified. With the addition of formerly recorded 14 species in the study area, a total of 162 species belonging to 87 genera, 49 families, and 17 orders were listed. Key words: Ascomycota, Basidiomycota, Ankara, Turkey. Özet: Bu çalışma, Ankara Üniversitesi Tandoğan Kampüsü'nden (Ankara) 2017 ve 2019 yılları arasında toplanan mantar ve enfekte olmuş konukçu bitki örneklerine dayanmaktadır. Arazi ve laboratuvar çalışmaları sonucunda 148 mantar türü tespit edilmiştir. Daha önce bildirilen 14 tür dahil olmak üzere 17 ordo, 49 familya, 87 cinse mensup 162 tür listelenmiştir. Introduction Ankara, the capital city of Turkey, is situated in the compiled literature data were published as checklists in center of Anatolia, surrounded by Çankırı in the north, different times (Bahçecioğlu & Kabaktepe 2012, Doğan Bolu in the northwest, Kırşehir, and Kırıkkale in the east, et al.
    [Show full text]
  • Characterization of Trametes Versicolor : Medicinal Mushroom with Important Health Benefits
    Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Notulae Botanicae Horti AcademicPres Not Bot Horti Agrobo, 2018, 46(2):343-349. DOI:10.15835/nbha46211132 Agrobotanici Cluj-Napoca Original Article Characterization of Trametes versicolor : Medicinal Mushroom with Important Health Benefits Raluca M. POP 1, Ion Cosmin PUIA 2,3 , Aida PUIA 4*, Veronica S. CHEDEA 5, Nicolae LEOPOLD 6, Ioana C. BOCSAN 1, Anca D. BUZOIANU 1 1“Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, 23 Marinescu Street, Cluj-Napoca, Romania; [email protected] ; [email protected] ; [email protected] 2“Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, Department of Surgery, 19-21 Croitorilor Street, Cluj-Napoca, Romania; [email protected] 3“Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 3rd General Surgery Clinic, 19-21 Croitorilor Street, Cluj-Napoca, Romania 4“Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, Department Community Medicine, Discipline of Family Medicine, 19 Moţilor Street, Cluj-Napoca, Romania; [email protected] (*corresponding author) 5National Research and Development Institute for Biology and Animal Nutrition, Laboratory of Animal Biology, INCDBNA-IBNA Balotesti, Ilfov, Romania; [email protected] 6Babeş-Bolyai University, Faculty of Physics, 1 Kogălniceanu Street, Cluj-Napoca, Romania; [email protected] Abstract Trametes species represents a rich source of nutritive compounds with important pharmacological properties like antioxidant, antiinflammatory and anti-cancer properties. However, factors like genetic background, harvesting period, geographic location, climatic conditions and others are influencing the biosynthesis of bioactive compounds, their fingerprint and their concentration.
    [Show full text]
  • Turkey Tail Fungus Is Found on Decaying Trees, Stumps, and Logs
    A Thanksgiving Tail A common mushroom, turkey tail fungus is found on decaying trees, stumps, and logs. By J. Morton Galetto, CU Maurice River In honor of the upcoming holiday I’ve decided to talk about one of our most common fungi, turkey tail, a shelf or bracket fungus. Its name comes from the concentric rings in varying shades of brown on its fanned upper side, resembling a wild turkey’s tail. Its scientific name is trametes versicolor, versicolor meaning “of several colors.” Turkey tail’s spore-producing reproductive structure is called a conk, which is the visible fanned portion above the ground with multicolored stripes in concentric arcs. These colors are extremely variable: beige, cinnamons, oranges to brown, and reddish to purple hues. The semi- circular rings are usually well defined. The upper striped side of the conk is covered in fine hairs that are velvety. The underside is white and covered in pores that hold its reproductive spores, gills that are more common to other mushroom fungi. This variety is tough and leathery compared to other fungi. It can be eaten but is not tasty, leading most guides to call it inedible. However extracts, teas, and other compounds are made from it, primarily for alternative medicines. We will touch on that later. The pores place it into a family called polyporaceae or polypore fungi. These small tubes on the underside are hard to see with the naked eye but appear at 2-5 tubes per millimeter, so they are really tiny. The conks are not limited to a specific time of year.
    [Show full text]
  • The Taxonomy and Ecology of Wood Decay Fungi in Eucalyptus Obliqua Trees and Logs in the Wet Sclerophyll Forests of Southern Tasmania
    The taxonomy and ecology of wood decay fungi in Eucalyptus obliqua trees and logs in the wet sclerophyll forests of southern Tasmania by Anna J. M. Hopkins B.Sc. (Hons.) School of Agricultural Science, University of Tasmania Cooperative Research Centre for Forestry A research thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy January, 2007 Declarations This thesis contains no material which has been accepted for a degree or diploma in any university or other institution. To the best of my knowledge, this thesis contains no material previously published or written by another person, except where due acknowledgment is made in the text. Anna J. M. Hopkins This thesis may be made available for loan and limited copying in accordance with the Copyright Act of 1968. Anna J. M. Hopkins ii Abstract The wet sclerophyll forests in southern Tasmania are dominated by Eucalyptus obliqua and are managed on a notional silvicultural rotation length of 80 to 100 years. Over time, this will lead to a simplified stand structure with a truncated forest age and thus reduce the proportion of coarse woody debris (CWD), such as old living trees and large diameter logs, within the production forest landscape. Course woody debris is regarded as a critical habitat for biodiversity management in forest ecosystems. Fungi, as one of the most important wood decay agents, are key to understanding and managing biodiversity associated with decaying wood. In Australia, wood-inhabiting fungi are poorly known and the biodiversity associated with CWD has not been well studied. This thesis describes two studies that were undertaken to examine the importance of CWD as habitat for wood-inhabiting fungi in the wet sclerophyll forests of Tasmania.
    [Show full text]
  • A Case Study from the Warra LTER Site, Tasmania
    Aggregated retention and macrofungi: a case study from the Warra LTER site, Tasmania G.M. Gates1,2*, D.A. Ratkowsky1,2 and S.J. Grove3 1School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001 2School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001 3Forestry Tasmania, GPO Box 207, Hobart, Tasmania 7001 *e-mail: [email protected] (corresponding author) Abstract latter are important reservoirs of ectomycorrhizal fungal diversity, and that they may be expected The macrofungi of an aggregated retention to show an increased species richness at a later coupe harvested and burnt in April 2004 stage of regeneration of the surrounding forest. at the Warra long-term ecological research (LTER) site were documented at approximately fortnightly intervals over a period of 16 months Introduction between February 2005 and June 2006. In transects of approximately 400 m total length, The Warra silvicultural systems trial was 167 macrofungal species were recorded in established as a means of assessing a range the unharvested aggregates compared to 125 of alternatives to clearfell, burn and sow species in the regenerating harvested area, with (CBS) in Tasmania’s lowland wet eucalypt 63 species common to both. The regenerating forest (Hickey et al. 2001). Ecological area was a source of many saprotrophic fungi assessments have been based on long- and also contained many species that are term monitoring of the responses to these characteristically opportunistic, appearing after treatments of vascular plants, non-vascular disturbance or fire but not generally seen in plants (Kantvilas and Jarman 2004), birds forests that have progressed beyond the earliest (Lefort and Grove 2009) and litter-dwelling stage of regeneration.
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Cerioporus Squamosus Dryad’S Saddle Cerioporus Squamosus Pheasant’S-Back Polypore (Hudson) Quélet Pheasant’S-Back Polypore Polyporaceae
    Dryad’s Saddle Cerioporus squamosus Dryad’s Saddle Cerioporus squamosus Pheasant’s-back Polypore (Hudson) Quélet Pheasant’s-back Polypore Polyporaceae J F M A M J J A S O N D +++ +++ +-+ --+ +++ -++ +++ +-+ ID : Body creamy-white/darker, cover/ large flattened reddish-brown scales; shape varies (fan-shaped to circular/funnel-shaped); margin entire/lobed; flesh thick. Pores off-white, angular. Stalk white above, brownish-black at base; off-center/rudimentary. Habitat : Solitary, groups, overlapping clusters. On decaying hardwoods. Fruiting Body : 2 – 12” [5 – 30.5 cm] Creamy-white/dingy-yellowish/pale yellow-brown. Covered w/large flat - tened reddish-brown scales (often concentrically arranged). Kidney-/fan- shaped or circular/funnel-shaped. Margin entire/conspicuously lobed, thin. Flesh (<= 4 cm) white, soft-corky/fibrous-tough. Pores : Off-white. Angular. Tubes (2 – 8 mm). Stalk : 0.3 - 4.8” x 0.4 – 2” [1 – 12 cm x 1 – 5 cm] White on upper portion, brown/brownish-black at base, lateral/off-cen- ter/rudimentary. Spores : White . Ellipsoid, smooth. Frequency : Abundant. Locations : AVORG, CASCT, DANPV, FHWLP, GONRA, GWACP, HAMVL, HENPV, MARPV, MPENA, ORRBB, OTHER, PATBT, OTHER, PIGTL, ROBNC, RKBRP, SAVMP, SAVPK, SLMLP, WINFM, WINTR. Synonym : Polyporus squamosus. Notes: Mycobank 163056. Index Fungorum and Mycobank disagree on preferred name. Mycobank 186284: Polyporus squamosus (Hudson) Fries. Daniels specimen identified by examination of spores by R. Solem. Grows in spring and again in fall. OVERALL: Daniels, 8/23/2008, N. Magnusson . References : Bar 145. BBF 392, 11. BBH 263. Bni 422. E&S 320. UPPER SURFACE and STALKS: Font Hill Wetland Pk, 4/29/20074, K&M 323.
    [Show full text]