Download Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heterotrophic Carbon Fixation in a Salamander-Alga Symbiosis
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.948299; this version posted February 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Heterotrophic Carbon Fixation in a Salamander-Alga Symbiosis. John A. Burns1,2, Ryan Kerney3, Solange Duhamel1,4 1Lamont-Doherty Earth Observatory of Columbia University, Division of Biology and Paleo Environment, Palisades, NY 2Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 3Gettysburg College, Biology, Gettysburg, PA 4University of Arizona, Department of Molecular and Cellular Biology, Tucson, AZ Abstract The unique symbiosis between a vertebrate salamander, Ambystoma maculatum, and unicellular green alga, Oophila amblystomatis, involves multiple modes of interaction. These include an ectosymbiotic interaction where the alga colonizes the egg capsule, and an intracellular interaction where the alga enters tissues and cells of the salamander. One common interaction in mutualist photosymbioses is the transfer of photosynthate from the algal symbiont to the host animal. In the A. maculatum-O. amblystomatis interaction, there is conflicting evidence regarding whether the algae in the egg capsule transfer chemical energy captured during photosynthesis to the developing salamander embryo. In experiments where we took care to separate the carbon fixation contributions of the salamander embryo and algal symbionts, we show that inorganic carbon fixed by A. maculatum embryos reaches 2% of the inorganic carbon fixed by O. amblystomatis algae within an egg capsule after 2 hours in the light. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Biomass Productivity.Pdf
Universidad de Huelva Departamento de Química y Ciencia de los Materiales Biomass productivity enhancement and lutein enrichment of an acidic environment microalga Memoria para optar al grado de doctora presentada por: Isabel Mª Vaquero Calañas Fecha de lectura: 5 de diciembre de 2013 Bajo la dirección del doctor: Carlos Vílchez Lobato Huelva, 2013 UNIVERSIDAD DE HUELVA FACULTAD DE CIENCIAS EXPERIMENTALES DEPARTAMENTO DE QUÍMICA Y CIENCIA DE LOS MATERIALES “PROFESOR JOSÉ CARLOS VÍLCHEZ MARTÍN” BIOMASS PRODUCTIVITY ENHANCEMENT AND LUTEIN ENRICHMENT OF AN ACIDIC ENVIRONMENT MICROALGA “MEJORA DE LA PRODUCTIVIDAD DE BIOMASA Y ENRIQUECIMIENTO EN LUTEINA DE UNA MICROALGA DE AMBIENTE ACIDO” PROGRAMA DE DOCTORADO CIENCIA Y TECNOLOGÍA QUÍMICA MEMORIA PRESENTADA PARA OPTAR AL GRADO DE DOCTOR POR: Isabel María Vaquero Calañas Trabajo presentado bajo la dirección de: Dr. Carlos Vílchez Lobato Huelva, 2013 Los hombres ocupan muy poco lugar sobre la tierra… Las personas mayores no te creerán, seguramente, pues siempre se imaginan que ocupan mucho sitio. (“El Principito” Antoine de SaintExupéry) CONTENTS (…) Science does not, by itself, advocate courses of human action, but it can certainly illuminate the possible consequences of alternative courses.(…)” (Carl Sagan) Contents ABSTRACT 1 RESUMEN 5 CHAPTER I: Introduction, thesis outline and aims 9 1. MICROORGANISMS LIFE OF EXTREME ENVIRONMENTS 11 2. ACIDIC MICROALGAE: TINTO RIVER 18 3. PHYSIOLOGICAL ADAPTATIONS OF ACIDENVIRONMENT 21 MICROALGAE 4. MICROALGAL CAROTENOIDS 25 5. MICROALGAL CULTIVATION SYSTEMS 39 6. COCCOMYXA ONUBENSIS 45 7. THESIS OUTLINE 48 8. AIMS 51 CHAPTER II: Efficient inorganic carbon utilization as a tool to enhance acid‐environment microalgal growth 53 1. ABSTRACT 55 2. -
Catálogo De Las Algas Y Cianoprocariotas Dulciacuícolas De Cuba
CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. EDITORIAL Augusto Comas González UNIVERSO o S U R CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. 1 2 CATÁLOGO DE LAS ALGAS Y CIANOPROCARIOTAS DULCIACUÍCOLAS DE CUBA. Augusto Comas González 3 Dirección Editorial: MSc. Alberto Valdés Guada Diseño: D.I. Roberto C. Berroa Cabrera Autor: Augusto Comas González Compilación y edición científica: Augusto Comas González © Reservados todos los derechos por lo que no se permite la reproduc- ción total o parcial de este libro. Editorial UNIVERSO SUR Universidad de Cienfuegos Carretera a Rodas, Km. 4. Cuatro Caminos Cienfuegos, CUBA © ISBN: 978-959-257-228-7 4 Indice INTRODUCCIÓN 7 CYANOPROKARYOTA 9 Clase Cyanophyceae 9 Orden Chroococcales Wettstein 1923 9 Orden Oscillatoriales Elenkin 1934 15 Orden Nostocales (Borzi) Geitler 1925 19 Orden Stigonematales Geitler 1925 22 Clase Chrysophyceae 23 Orden Chromulinales 23 Orden Ochromonadales 23 Orden Prymnesiales 24 Clase Xanthophyceae (= Tribophyceae) 24 Orden Mischococcales Pascher 1913 24 Orden Tribonematales Pascher 1939 25 Orden Botrydiales 26 Orden Vaucheriales 26 Clase Dinophyceae 26 Orden Peridiniales 26 Clase Cryptophyceae 27 Orden Cryptomonadales 27 Clase Rhodophyceae Ruprecht 1851 28 Orden Porphyridiales Kylin 1937 28 Orden Compsopogonales Skuja 1939 28 Orden Nemalionales Schmitz 1892 28 Orden Hildenbrandiales Pueschel & Cole 1982) 29 Orden Ceramiales 29 Clase Glaucocystophyceae Kies et Kremer 1989 29 Clase Euglenophyceae 29 Orden Euglenales 29 Clase Bacillariophyceae 34 Orden Centrales 34 Orden Pennales 35 Clase Prasinophyceae Chadefaud 1950 50 Orden Polyblepharidales Korš. 1938 50 Orden Tetraselmidales Ettl 1983 51 Clase Chlamydophyceae Ettl 1981 51 Orden Chlamydomonadales Frtisch in G.S. West 1927 51 5 Orden Volvocales Oltmanns 1904 52 Orden Chlorococcales Marchand 1895 Orth. -
The Symbiotic Green Algae, Oophila (Chlamydomonadales
University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance. -
Rana Dalmatina Erruteen Eta Mikroalga Klorofitoen Arteko Sinbiosia: Atariko Karakterizazioa Eta Ikerketarako Proposamenak
Gradu Amaierako Lana Biologiako Gradua Rana dalmatina erruteen eta mikroalga klorofitoen arteko sinbiosia: atariko karakterizazioa eta ikerketarako proposamenak Egilea: Aroa Jurado Montesinos Zuzendaria: Aitor Laza eta Jose Ignacio Garcia Leioa, 2016ko Irailaren 1a AURKIBIDEA Abstract ............................................................................................................................. 2 Laburpena ......................................................................................................................... 2 Sarrera ............................................................................................................................... 3 Material eta metodoak ...................................................................................................... 5 Laginketa eremua………...……………………………………………………...5 Mikroalga berdeen kolonizazioaren karakterizazioa…..………………………..6 Denboran zeharreko alga berdeen dinamika…………..………………………..7 Emaitzak ........................................................................................................................... 9 Mikroalga berdeen kolonizazioaren karakterizazioa……………………...……..9 Denboran zeharreko alga berdeen dinamika……..……………………………12 Eztabaida ........................................................................................................................ 16 Ondorioak ....................................................................................................................... 17 Etorkizunerako proposamenak ...................................................................................... -
Properties of Vernal Ponds and Their Effect on the Density of Green Algae
Properties of vernal ponds and their effect on the density of green algae (Oophila amlystomatis) in spotted salamander (Ambystoma maculatum) egg masses Megan Thistle BIOS 35502: Practicum in Field Biology Advisor: Dr. Matthew Michel 2012 Abstract Amphibian populations are threatened and declining in many parts of the world and have been since the 1970s. Salamanders in particular are important mid-level predators that can provide direct and indirect biotic controls of species diversity and ecosystem processes. They also provide an important service to humans as cost-effective and readily quantifiable metrics of ecosystem health and integrity. Since salamanders are important ecosystem health indicators, steps should be taken to ensure their survival. One species in particular, Ambystoma maculatum or the spotted salamander has a unique symbiotic relationship with green algae, Oophila amlystomatis. The algae provide oxygen to the developing salamanders, helping them to grow quickly and improving post-hatching survival rates. The algae, on the other hand, use the CO2 and nitrogenous waste produced by the salamander embryos. Lab studies have shown that increased light, warmer water and increased partial pressure of oxygen benefit the algae, which in turn help the salamanders. In this study, the environmental variables of water temperature, dissolved oxygen (DO), pH, conductivity, algae eater density, canopy cover and aquatic vegetation were compared to the density of algae found in salamander egg cells in different vernal ponds. Results showed that none of the above environmental factors had a significant relationship with algae density in eggs in the different vernal ponds. Tests showed however that density of algae in egg cells was significantly different in some ponds as compared to others, which suggests that either other environmental factors have more of an influence on algal density, or there is a complex combination of factors that need to be considered. -
Jihočeská Universita V Českých Budějovicích Přírodovědecká
Jihočeská universita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Heterocytozní sinice rodu Scytonema, Calothrix a Scytonematopsis z oblasti Great Smoky Mountains National Park, USA Jarmila Michálková Školitel: Doc. RNDr. Jan Kaštovský, Ph.D. České Budějovice 2014 MICHÁLKOVÁ, J. (2014): Heterocytozní sinice rodu Scytonema, Calothrix a Scytonematopsis z oblasti Great Smoky Mountains National Park, USA. [Heterocytous cyanobacteria from genera Scytonema, Calothrix and Scytonematopsis in Great Smoky Mountains National Park, USA., Bachelor thesis, in Czech] – University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 68 pp. Anotace: The aim of this thesis was to isolate and morphologically determine heterocytous cyanobacteria of taxonomically obscure genera Scytonema, Calothrix and Scytonematopsis from samples collected in the Great Smoky Mountains National Park, USA. Optimal cultivation practices were used and five species were identified - Scytonema (Scytonema hofmanii, Scytonema cf. millei and Scytonema subgelatinosum), Calothrix (Calothrix fusca) and Scytonematopsis (Scytonematopsis sp.). Prohlášení: Prohlašuji, že svoji bakalářskou práci jsem vypracovala samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s §47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své bakalářské práce a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou Universitou v Českých Budějovicích -
Connecticut Wildlife March/April 2012 –Sport Fish Restoration–
March/April 2012 CONNECTICUT DEPARTMENT OF ENERGY AND ENVIRONMENTAL PROTECTION BUREAU OF NATURAL RESOURCES DIVISIONS OF WILDLIFE, INLAND & MARINE FISHERIES, AND FORESTRY March/April 2012 Connecticut Wildlife 1 Volume 32, Number 2 ● March / April 2012 From the Director’s Desk onnecticut C ildlife Guest Column by Inland Fisheries W Published bimonthly by Division Director Peter Aarrestad Connecticut Department of While we navigate our way into the future, it Energy and Environmental Protection is wise to do so with an eye toward the past. Bureau of Natural Resources As stewards, supporters, and managers of our Wildlife Division www.ct.gov/deep state’s natural resources, we are fortunate to Commissioner be ably guided by many visionary forebears, including those instrumental Daniel C. Esty in creating the Federal Aid in Wildlife Restoration Act (1937) and Sport Deputy Commissioner Fish Restoration Act (1950) that you read about in the previous edition Susan Frechette Chief, Bureau of Natural Resources of Connecticut Wildlife. Collectively, these noteworthy and successful William Hyatt pieces of federal legislation have enabled our state and others to establish Director, Wildlife Division relevant and effective natural resource management programs for the Rick Jacobson conservation and human enjoyment of our fish and wildlife resources. Magazine Staff I encourage you to learn in this edition about our diverse freshwater Managing Editor Kathy Herz fisheries management programs (angling is now a year-round activity in Production Editor Paul Fusco our state), reconnecting migratory fish runs with historic habitat, state Contributing Editors: Tim Barry (Inland Fisheries) Penny Howell (Marine Fisheries) wildlife management areas, and the deer management program, all of James Parda (Forestry) which rely to some degree upon these important federal funding sources. -
49639109, 49639110, 49535803, 49535801, 49639104). the Reviewer
Literature Review Summary Chemical Name: Atrazine PC Code: 080803 Purpose of Review (DP Barcode or Litigation): Review for inclusion in the atrazine risk assessment Date of Review: 3/21/16 Summary Syngenta submitted the following list of studies describing the isolation, culturing and testing for atrazine toxicity on the algae Oophila sp., an algae that forms a symbiotic relationship with some salamander species (MRIDs 49639109, 49639110, 49535803, 49535801, 49639104). The reviewer read the following study reports provided to the agency and considered their science and reported results: Baxter, L.; Brain, R.; Rodriguez-Gil, J.; et al. (2014) Atrazine: Response of the Green Alga Oophila sp., a Salamander Endosymbiont, to a PSII-Inhibitor under Laboratory Conditions. Environmental Toxicology and Chemistry 33(8):1858-1864. MRID 49535803 Hanson, M.; Rodriquez-Gil, J.; Baxter, L.; et al. (2014) Isolation, Identification, and Optimization of Culturing Conditions of the Alga Oophila sp., a Salamander Symbiont, for its Use in Toxicity Testing under Laboratory Conditions: Final Report. Project Number: ATZ2013B, TK0186283. Unpublished study prepared by University of Guelph. 30p., MRID 49639109 Hanson, M.; Baxter, L.; Rodriquez-Gil, J.; et al. (2014) Characterization of the Response of the Alga Oophila sp., a Salamander Symbiont, to Atrazine Under Laboratory Conditions: Final Report. Project Number: ATZ2013A, TK0186283. Unpublished study prepared by University of Guelph. 52p., MRID 49639110 Hanson, M.; Baxter, L.; Solomon, K. (2015) The Response of the Salamander Ambystoma maculatum and its Egg-Capsule Endosymbiont (the alga Oophila sp.) to the Photosystem II Inhibitor Atrazine Under Laboratory Conditions: Final Report. Project Number: ATZ2014, TK0224041. Unpublished study prepared by University of Guelph. -
Mz [email protected] Yevhen Maltsev ECOLOGICAL FEATURES OF
330 [email protected] - ( - ( ) . , . - - , . Yevhen Maltsev ECOLOGICAL FEATURES OF ALGAE COMMUNITIES IN FOREST FLOOR OF PINE PLANTATIONS OF DIFFERENT TYPES OF LANDSCAPES IN STEPPE AREA OF UKRAINE ISSN 2225-5486 (Print), ISSN 2226-9010 (Online). 3 Biological Bulletin 331 The steppe zone of Ukraine features a large variety of types of natural landscapes that together significantly differ in microclimatic, soil, hydrological and geobotanic conditions. Such a diversity of forest conditions affects not only the trees, but also on all biotic components of forest ecosystems including algae. Purpose of the study was establish systematic position of species, dominant and subdominant, leading families of algae for plantings in forest floor of pine plantations of the valley-terrace and inundable-terrace landscapes in steppe area of Ukraine. In general, in the forest floor of Samara pine forest marked 34 species of algae with 4 divisions, most of which related to green: Chlorophyta 22 (65%), Xanthophyta 8 (23%), Bacillariophyta 2 (6%) and Eustigmatophyta 2 (6%). Among the leading families of the greatest number of species belonged to: Pleurochloridaceae (7 species), Chlorococcaceae (5), Chlamydomonadaceae (4). During all studied seasons in base of algae communities were species resistant to extreme values of all climatic conditions. Total in forest floor of pine forest in Altagir forest marked 42 species of algae with 5 divisions: Chlorophyta - 23 (55 %), Xanthophyta - 9 (21 %), Cyanophyta - 5 (12 %), Bacillariophyta - 3 (7%) and Eustigmatophyta 2 (5%). Systematic structure of list species determine three family, which have the number of species in excess of the average number (2): Pleurochloridaceae, Chlamydomonadaceae and Myrmeciaceae. The base of algae community are moisture-loving and shade-tolerant species, which may be the result of favorable moisture regime. -
Research Article
Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.