Use Style: Paper Title
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. -
AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000. -
Bibliography of Traditional Board Games
Bibliography of Traditional Board Games Damian Walker Introduction The object of creating this document was to been very selective, and will include only those provide an easy source of reference for my fu- passing mentions of a game which give us use- ture projects, allowing me to find information ful information not available in the substan- about various traditional board games in the tial accounts (for example, if they are proof of books, papers and periodicals I have access an earlier or later existence of a game than is to. The project began once I had finished mentioned elsewhere). The Traditional Board Game Series of leaflets, The use of this document by myself and published on my web site. Therefore those others has been complicated by the facts that leaflets will not necessarily benefit from infor- a name may have attached itself to more than mation in many of the sources below. one game, and that a game might be known Given the amount of effort this document by more than one name. I have dealt with has taken me, and would take someone else to this by including every name known to my replicate, I have tidied up the presentation a sources, using one name as a \primary name" little, included this introduction and an expla- (for instance, nine mens morris), listing its nation of the \families" of board games I have other names there under the AKA heading, used for classification. and having entries for each synonym refer the My sources are all in English and include a reader to the main entry. -
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit Presented by Josh Fried Background: Machine Learning Neural Networks: ● Multi Layer Perceptrons ● Recurrent Neural Networks (mostly LSTMs) ● Convolutional Neural Networks Synapse - each edge, has a weight Neuron - each node, sums weights and uses non-linear activation function over sum Propagating inputs through a layer of the NN is a matrix multiplication followed by an activation Background: Machine Learning Two phases: ● Training (offline) ○ relaxed deadlines ○ large batches to amortize costs of loading weights from DRAM ○ well suited to GPUs ○ Usually uses floating points ● Inference (online) ○ strict deadlines: 7-10ms at Google for some workloads ■ limited possibility for batching because of deadlines ○ Facebook uses CPUs for inference (last class) ○ Can use lower precision integers (faster/smaller/more efficient) ML Workloads @ Google 90% of ML workload time at Google spent on MLPs and LSTMs, despite broader focus on CNNs RankBrain (search) Inception (image classification), Google Translate AlphaGo (and others) Background: Hardware Trends End of Moore’s Law & Dennard Scaling ● Moore - transistor density is doubling every two years ● Dennard - power stays proportional to chip area as transistors shrink Machine Learning causing a huge growth in demand for compute ● 2006: Excess CPU capacity in datacenters is enough ● 2013: Projected 3 minutes per-day per-user of speech recognition ○ will require doubling datacenter compute capacity! Google’s Answer: Custom ASIC Goal: Build a chip that improves cost-performance for NN inference What are the main costs? Capital Costs Operational Costs (power bill!) TPU (V1) Design Goals Short design-deployment cycle: ~15 months! Plugs in to PCIe slot on existing servers Accelerates matrix multiplication operations Uses 8-bit integer operations instead of floating point How does the TPU work? CISC instructions, issued by host. -
Inventaire Des Jeux Combinatoires Abstraits
INVENTAIRE DES JEUX COMBINATOIRES ABSTRAITS Ici vous trouverez une liste incomplète des jeux combinatoires abstraits qui sera en perpétuelle évolution. Ils sont classés par ordre alphabétique. Vous avez accès aux règles en cliquant sur leurs noms, si celles-ci sont disponibles. Elles sont parfois en anglais faute de les avoir trouvées en français. Si un jeu vous intéresse, j'ai ajouté une colonne « JOUER EN LIGNE » où le lien vous redirigera vers le site qui me semble le plus fréquenté pour y jouer contre d'autres joueurs. J'ai remarqué 7 catégories de ces jeux selon leur but du jeu respectif. Elles sont décrites ci-dessous et sont précisées pour chaque jeu. Ces catégories sont directement inspirées du livre « Le livre des jeux de pions » de Michel Boutin. Si vous avez des remarques à me faire sur des jeux que j'aurai oubliés ou une mauvaise classification de certains, contactez-moi via mon blog (http://www.papatilleul.fr/). La définition des jeux combinatoires abstraits est disponible ICI. Si certains ne répondent pas à cette définition, merci de me prévenir également. LES CATÉGORIES CAPTURE : Le but du jeu est de capturer ou de bloquer un ou plusieurs pions en particulier. Cette catégorie se caractérise souvent par une hiérarchie entre les pièces. Chacune d'elle a une force et une valeur matérielle propre, résultantes de leur capacité de déplacement. ELIMINATION : Le but est de capturer tous les pions de son adversaire ou un certain nombre. Parfois, il faut capturer ses propres pions. BLOCAGE : Il faut bloquer son adversaire. Autrement dit, si un joueur n'a plus de coup possible à son tour, il perd la partie. -
E-Book? Začala Hra
Nejlepší strategie všech dob 1 www.yohama.cz Nejlepší strategie všech dob Obsah OBSAH DESKOVÁ HRA GO ................................................................................................................................ 3 Úvod ............................................................................................................................................................ 3 Co je to go ................................................................................................................................................... 4 Proč hrát go ................................................................................................................................................. 7 Kde získat go ................................................................................................................................................ 9 Jak začít hrát go ......................................................................................................................................... 10 Kde a s kým hrát go ................................................................................................................................... 12 Jak se zlepšit v go ...................................................................................................................................... 14 Handicapová hra ....................................................................................................................................... 15 Výkonnostní třídy v go a rating hráčů ....................................................................................................... -
FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010 259 FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal Abstract—FUEGO is both an open-source software framework with new algorithms that would not be possible otherwise be- and a state-of-the-art program that plays the game of Go. The cause of the cost of implementing a complete state-of-the-art framework supports developing game engines for full-information system. Successful previous examples show the importance of two-player board games, and is used successfully in a substantial open-source software: GNU GO [19] provided the first open- number of projects. The FUEGO Go program became the first program to win a game against a top professional player in 9 9 source Go program with a strength approaching that of the best Go. It has won a number of strong tournaments against other classical programs. It has had a huge impact, attracting dozens programs, and is competitive for 19 19 as well. This paper gives of researchers and hundreds of hobbyists. In Chess, programs an overview of the development and current state of the UEGO F such as GNU CHESS,CRAFTY, and FRUIT have popularized in- project. It describes the reusable components of the software framework and specific algorithms used in the Go engine. novative ideas and provided reference implementations. To give one more example, in the field of domain-independent planning, Index Terms—Computer game playing, Computer Go, FUEGO, systems with publicly available source code such as Hoffmann’s man-machine matches, Monte Carlo tree search, open source soft- ware, software frameworks. -
Courier Gazette : October 19, 1939
IsS8UED J g ESDAY ItoURSDffiT Saturday he ourier azette T Entered is Second ClassC Mail Matter -G Established January, 1846 By The Courier-Gazette, 465 Main St. Rockland, Maine, Thursday, October 19, 1939 TWELVE PAGES V o lu m e 9 4 ....................Number 125. The Courier-Gazette [EDITORIAL] THREE-TIMES * WEEK HELLO DAD,” SAID HELVI HELD UP FEYLER’SLOBSTERS AIR AGAINST SEA Editor “The Black Cat” WM O FULLER Apropos of an editorial which appeared in this column Associate Editor At the Bell telephone exhibit at This Is going to be good, thought Tuesday is the rapidly dawning belief that the skies hold the FRANK A, WINSLOW the World's Fair 150 persons daily the other listeners, and they gave Union Trucks Place Ban On Rockland Concern, destinies of battles which will be fought in the future. Under arc permitted to talk free to any careful attention. Subscription* 43 00 per year payable the caption "Air Against Sea." the Press Herald yesterday said: In advance: single copies three cents. point In the United States, the And then, with gatling rapidity For Reason Unknown To It Advertising rate* baaed upon circula Defense is easier than offense, sav military tacticians, tion and very reasonable privilege determined by the draw Helvi began to talk to "dad" in writing of land operations. But what of the air? Here small NEWSPAPER HISTORY ing of lucky numbers. Finnish. handfuls of German planes have succeeded in doing consider (Press Herald) The Rockland Gazette was estab In attendance one night recently The 300 listeners put down their Commissioner of Sea and Shore able damage and ln causing a great deal of consternation lished In 1846. -
Readers of the Round Table: the 1998 Joint Kentucky Arizona Reading Program
DOCUMENT RESUME ED 429 604 IR 057 328 TITLE Readers of the Round Table: The 1998 Joint Kentucky Arizona Reading Program. INSTITUTION Kentucky State Dept. for Libraries and Archives, Frankfort.; Arizona State Dept. of Library, Archives and Public Records, Phoenix. PUB DATE 1998-00-00 NOTE 357p. PUB TYPE Guides Non-Classroom (055) Reference Materials Bibliographies (131) Tests/Questionnaires (160) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTORS Adolescent Literature; Childrens Libraries; Childrens Literature; *Creative Activities; Elementary Secondary Education; Enrichment Activities; *Library Services; *Medieval History; Parent Participation; Preschool Education; Program Guides; *Public Libraries; Questionnaires; *Reading Programs; Resource Materials; *Summer Programs; Thematic Approach IDENTIFIERS Arizona; Kentucky ABSTRACT Intended to encourage children of all ages to read over the summer, this manual presents library-based programs, crafts, displays, and events with a medieval theme. The chapters of the manual are: (1) Introductory Materials;(2) Goals, Objectives and Evaluation;(3) Getting Started;(4) Common Program Structures;(5) Planning Timeline;(6) Publicity and Promotion;(7) Awards and Incentives;(8) Parents/Family Involvement; (9) Programs for Preschoolers, including display ideas, flannel board stories, origami, puzzle stories, songs, crafts, activities, plays, crafts, recipes, medieval clip art, and a preschool bibliography; (10) Programs for School Age Children, including entertainment programs, songs, activities, and a school age bibliography;(11) Programs for Young Adults, including activities, a medieval menu, and a young adult bibliography;(12) Special Needs; and (13) Resources, including people, companies, and materials. A master copy of a reading log and reading program evaluation form are included.(AEF) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. -
Understanding & Generalizing Alphago Zero
Under review as a conference paper at ICLR 2019 UNDERSTANDING &GENERALIZING ALPHAGO ZERO Anonymous authors Paper under double-blind review ABSTRACT AlphaGo Zero (AGZ) (Silver et al., 2017b) introduced a new tabula rasa rein- forcement learning algorithm that has achieved superhuman performance in the games of Go, Chess, and Shogi with no prior knowledge other than the rules of the game. This success naturally begs the question whether it is possible to develop similar high-performance reinforcement learning algorithms for generic sequential decision-making problems (beyond two-player games), using only the constraints of the environment as the “rules.” To address this challenge, we start by taking steps towards developing a formal understanding of AGZ. AGZ includes two key innovations: (1) it learns a policy (represented as a neural network) using super- vised learning with cross-entropy loss from samples generated via Monte-Carlo Tree Search (MCTS); (2) it uses self-play to learn without training data. We argue that the self-play in AGZ corresponds to learning a Nash equilibrium for the two-player game; and the supervised learning with MCTS is attempting to learn the policy corresponding to the Nash equilibrium, by establishing a novel bound on the difference between the expected return achieved by two policies in terms of the expected KL divergence (cross-entropy) of their induced distributions. To extend AGZ to generic sequential decision-making problems, we introduce a robust MDP framework, in which the agent and nature effectively play a zero-sum game: the agent aims to take actions to maximize reward while nature seeks state transitions, subject to the constraints of that environment, that minimize the agent’s reward. -
Strategy Game Programming Projects
STRATEGY GAME PROGRAMMING PROJECTS Timothy Huang Department of Mathematics and Computer Science Middlebury College Middlebury, VT 05753 (802) 443-2431 [email protected] ABSTRACT In this paper, we show how programming projects centered around the design and construction of computer players for strategy games can play a meaningful role in the educational process, both in and out of the classroom. We describe several game-related projects undertaken by the author in a variety of pedagogical situations, including introductory and advanced courses as well as independent and collaborative research projects. These projects help students to understand and develop advanced data structures and algorithms, to manage and contribute to a large body of existing code, to learn how to work within a team, and to explore areas at the frontier of computer science research. 1. INTRODUCTION In this paper, we show how programming projects centered around the design and construction of computer players for strategy games can play a meaningful role in the educational process, both in and out of the classroom. We describe several game-related projects undertaken by the author in a variety of pedagogical situations, including introductory and advanced courses as well as independent and collaborative research projects. These projects help students to understand and develop advanced data structures and algorithms, to manage and contribute to a large body of existing code, to learn how to work within a team, and to explore areas at the frontier of computer science research. We primarily consider traditional board games such as chess, checkers, backgammon, go, Connect-4, Othello, and Scrabble. Other types of games, including video games and real-time strategy games, might also lead to worthwhile programming projects. -
CONNECT6 I-Chen Wu1, Dei-Yen Huang1, and Hsiu-Chen Chang1
234 ICGA Journal December 2005 NOTES CONNECT6 1 1 1 I-Chen Wu , Dei-Yen Huang , and Hsiu-Chen Chang Hsinchu, Taiwan ABSTRACT This note introduces the game Connect6, a member of the family of the k-in-a-row games, and investigates some related issues. We analyze the fairness of Connect6 and show that Connect6 is potentially fair. Then we describe other characteristics of Connect6, e.g., the high game-tree and state-space complexities. Thereafter we present some threat-based winning strategies for Connect6 players or programs. Finally, the note describes the current developments of Connect6 and lists five new challenges. 1. INTRODUCTION Traditionally, the game k-in-a-row is defined as follows. Two players, henceforth represented as B and W, alternately place one stone, black and white respectively, on one empty square2 of an m × n board; B is assumed to play first. The player who first obtains k consecutive stones (horizontally, vertically or diagonally) of his own colour wins the game. Recently, Wu and Huang (2005) presented a new family of k-in-a-row games, Connect(m,n,k,p,q), which are analogous to the traditional k-in-a-row games, except that B places q stones initially and then both W and B alternately place p stones subsequently. The additional parameter q is a key that significantly influences the fairness. The games in the family are also referred to as Connect games. For simplicity, Connect(k,p,q) denotes the games Connect(∞,∞,k,p,q), played on infinite boards. A well-known and popular Connect game is five-in-a-row, also called Go-Moku.