Atmospheric Transport Patterns from the Kola Nuclear Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Transport Patterns from the Kola Nuclear Reactors Atmospheric Transport Patterns from the Kola Nuclear Reactors Alexander Mahura University of Alaska, Fairbanks, USA University of Washington, Seattle, USA Kola Science Center, Apatity, Russia Robert Andres University of Alaska, Fairbanks, USA University of North Dakota, Grand Forks, USA Daniel Jaffe University of Alaska, Fairbanks, USA University of Washington-Bothell, USA Northern Studies Working Paper cerum, Centre for Regional Science No. 24:2001 se-90187 Umeå Sweden The Project “Nuclear Problems, Risk Perceptions of, and Societal Responses to, Nuclear Waste in the Barents Region” - an Acknowledgement Since the late eighties, CERUM has developed research with a focus on the shaping of and development within the Barents Region. Two spe- cific features have characterised this research. First of all our ambition has been to develop research projects in close collaboration with inter- national and especially Russian researchers. This has materialised as an exchange of researchers at conferences both in Sweden and in Russia. Secondly, our view has been that the Barents region must be analysed by researchers that represent a broad set of competences. Especially our ambition is to develop a deeper and more integrated collaboration between researchers from social sciences and arts on one hand and nat- ural sciences on the other. With the Swedish Board for Civil Emergency Preparedness (ÖCB) as the main finacier, CERUM has for a couple of years developed re- search within the project “Nuclear Problems, Risks Perceptions of, and Social Responses to, Nuclear Waste in the Barents Region”. This report is produced within the afore-mentioned project. The project deals with vulnerability as a response to the latent security ques- tions associated with the existence of nuclear power and nuclear waste in the Barents region. Clearly there is within the project a large scoop for an analysis with its roots in natural sciences of the size and disper- sion of various types of waste from the region. The project also has pro- duced a set of such papers. Those papers raise questions that immedi- ately lead to other papers and a discussion with its roots in social sci- ences, of civil emergency preparedness in a broad and spatially delim- ited sense as well as a discussion of the need for an enlarged concept of safety. The pattern of spatial risk dispersion, which in this case not halts at the national borders, and the associated construction of governance in the Barents region also imply that trans-border negotiation, conflict, and cooperation become key words in the discourse. Gösta Weissglas Lars Westin Project leader Director of CERUM 2 List of Figures and Tables Figure 1.2.1 Geographic relationship of KNPP 5 Figure 1.3.1 Position of the Arctic front 6 Figure 2.1.1 Geographical regions of interest and model grid domain 8 Figure 2.2.1 Examples of trajectories showing consistent air flow 9 Figure 2.2.2 Examples of complex trajectories 1 Figure 2.3.1 5-day isentropic forward trajectories originated over the KNR region during 11 1992 Figure 2.3.2 Cluster mean trajectories or transport pathways from KNR during 1992 Figure 3.1.1 Monthly variations in the average transport time (in days) from the KNR region 14 to geographical regions based on the forward trajectories during 1991-1995 Figure 3.1.2 Monthly variations in the average percentage of trajectories originated over the KNR region at lower altitudes within the boundary layer and reached the geographical regions during 1991-1995 Figure 3.2.1 Atmospheric transport pathways (cluster mean trajectories) from the KNR 15 region based on the forward trajectories during 1991-1995 Figure 3.3.1 Airflow probability field within the boundary layer for the trajectories, originated over the KNR region during 1991-1995 (isolines are shown every 10%) Figure 3.4.1 Precipitation factor probability field for the boundary layer based on the relative humidity fields for the trajectories, originated over the KNR region during 1991-1995 (isolines are shown every 5%) Figure 3.5.1 Fast transport probability field within the boundary layer for the trajectories, originated over the KNR region during April of 1991-1995 (isolines are shown every 10%) Figure A1 Atmospheric transport pathways from KNR during spring Figure A2 Atmospheric transport pathways from KNR during summer Figure A3 Atmospheric transport pathways from KNR during fall Figure A4 Atmospheric transport pathways from KNR during winter Figure B1 Spring airflow probability field within the boundary layer Figure B2 Summer airflow probability field within the boundary layer Figure B3 Fall airflow probability field within the boundary layer Figure B4 Winter airflow probability field within the boundary layer Figure C1 Spring precipitation probability field for the surface-1.5 km asl layer Figure C2 Summer precipitation probability field for the surface-1.5 km asl layer Figure C3 Fall precipitation probability field for the surface-1.5 km asl layer Figure C4 Winter precipitation probability field for the surface-1.5 km asl layer Figure D1 Spring fast transport probability field within the boundary layer Figure D2 Summer fast transport probability field within the boundary Figure D3 Fall fast transport probability field within the boundary layer Figure D4 Winter fast transport probability field within the boundary layer Table 1.3.1 Seasonal average meteorological variables (Meteorological station at Zasheek) Table 3.1.1 Transport summary from KNR region to geographical regions 3 EXECUTIVE SUMMARY This report has a purpose to show a methodology and possibilities for future studies of the possible impact to different geographical areas of the Barents Euro-Arctic Region from the numerous nuclear risk objects on the Kola Peninsula. The Kola Peninsula (Murmansk region, Russia), being the nearest neighbor to the Nordic countries, plays a considerable role in the airborne pollution problem in the Barents Euro-Arctic region. There are two main types of airborne pollution sources in this area. From one side, it is an airborne pollution from largest Cu-Ni metallurgical companies of the Kola Peninsula. From another side, there is a potential risk of radioactive pollution under hypothetical accidents at numerous objects of the radiation risk in the region. It is known that among the reactors of the Former Soviet Union and Eastern Europe, the 15 RBMK and 6 VVER-440/230 are reactors of the greatest concern. Beside that, the high number of naval and commercial nuclear reactors on and along the Kola Peninsula in the Northwest Russia exceeds by far the concentration in any other region of the world. There are more than 170 nuclear reactors in operation, and about 140 reactors waiting to be decommissioned. Finally, the Russian government plans additional reactor units, despite public opposition and limited financial resources. The Kola nuclear power plant (KNPP) on the Kola Peninsula is the closest Russian nuclear power plant to the Scandinavian countries. It is located just 100 km from the Finnish and 200 km from the Norwegian border. Because this plant uses an older VVER-440/230 design reactors, has problems with storage and disposal of existing radioactive wastes and it was built in an area of the medium seismic activity, there are concerns about potential accidents at this facility and a subsequent release of radionuclides. For these reasons, we have examined atmospheric transport patterns, airflow, precipitation factor, fast transport probabilities, and possible impact from the plant’s reactors based on 1991- 1995 meteorological data sets on several geographical regions -- Scandinavian, European, Central Former Soviet Union (FSU), and Taymyr -- using an isentropic trajectory model, cluster analysis, and probability fields techniques. We found, that highly populated regions, Scandinavian and Central FSU, are at the greatest risk in comparison with the European region. Radionuclide transport to the Central FSU region can occur in one day, but averages 2.7 days with 45% of the cases of the free troposphere transport. To the Scandinavian region it can occur in 0.5 days, but averages 1.2 days with most of occurrences (up to 70%) resulting from the transport in the boundary layer. Since rapid transport (1 day) could bring relatively undiluted air parcels containing significant concentrations of radionuclides, these events were considered in greater detail by analyzing probabilistic fields. 4 1. INTRODUCTION 1.1. Introduction Background An accident at the Chernobyl nuclear power plant (51°17' N, 30°15' E), located in Ukraine (30 km south of the Belorussian border), was the most severe in the nuclear industry. The emissions continued from 26 April until 6 May 1986. This accident caused the rapid death of 31 plant employees and brought the evacuation of 116,000 people within a few weeks. About half a million workers and four million others have been exposed, to some extent, to radiation doses resulting from the Chernobyl accident (Bouville, 1995). During the weeks after the initial explosion, radioactive material was observed almost everywhere in the Northern Hemisphere due to long- range atmospheric transport. The main sources of radioactive pollution in northern Russia are similar to those in many western countries (Bridges and Bridges, 1995; Nuclear Wastes in the Arctic, 1995). The most common source of anthropogenic radioactivity has been the global fallout from nuclear weapons testing in the atmosphere (Aarkrog, 1994; Bocharov et al., 1995). The ecosystems may contain relatively high levels of radioactive contamination. Beside global fallout they have received significant amounts of radioactivity from a number of other sources. These sources were studied in detail by Baklanov et al., 1993; Nilsen and Bohmer, 1994; Bergman et al., 1996; Nilsen et al., 1996. Nuclear power plants (NPPs) are one of these sources and they have a rank of relatively high radiological consequences in terms of doses to total population and influence on environment, if substantial release occurs (Baklanov et al., 1996).
Recommended publications
  • F R Id T Jo F Nansens in St It U
    VOLOS -R" RECEIVED WO* 2 9 899 oari Olav Schram Stokke Subregional Cooperation and Protection of the Arctic Marine Environment: The Barents Sea INSTITUTT POLOS Report No. 5/1997 NANSENS Polar Oceans Reports FRIDTJOF 3 1-05 FRIDTJOF NANSENS INSTITUTE THE FRIDTJOF NANSEN INSTITUTE Olav Schram Stokke Subregional Cooperation and Protection of the Arctic Marine Environment: The Barents Sea POLOS Report No. 5/1997 ISBN 82-7613-235-9 ISSN 0808-3622 ---------- Polar Oceans Reports a publication series from Polar Oceans and the Law of the Sea Project (POLOS) Fridtjof Nansens vei 17, Postboks 326, N-1324 Lysaker, Norway Tel: 67111900 Fax: 67111910 E-mail: [email protected] Bankgiro: 6222.05.06741 Postgiro: 5 08 36 47 © The Fridtjof Nansen Institute Published by The Fridtjof Nansen Institute DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Polar Oceans and the Law of the Sea Project (POLOS) POLOS is a three-year (1996-98) international research project in international law and international relations, initiated and coordinated by the Fridtjof Nansen Institute (FNI). The main focus of POLOS is the changing conditions in the contemporary international community influencing the Arctic and the Antarctic. The primary aim of the project is to analyze global and regional solutions in the law of the sea and ocean policy as these relate to the Arctic and Southern Oceans, as well as to explore the possible mutual relevance of the regional polar solutions, taking into consideration both similarities and differences of the two polar regions.
    [Show full text]
  • Ancient Fennoscandian Genomes Reveal Origin and Spread of Siberian Ancestry in Europe
    ARTICLE DOI: 10.1038/s41467-018-07483-5 OPEN Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe Thiseas C. Lamnidis1, Kerttu Majander1,2,3, Choongwon Jeong1,4, Elina Salmela 1,3, Anna Wessman5, Vyacheslav Moiseyev6, Valery Khartanovich6, Oleg Balanovsky7,8,9, Matthias Ongyerth10, Antje Weihmann10, Antti Sajantila11, Janet Kelso 10, Svante Pääbo10, Päivi Onkamo3,12, Wolfgang Haak1, Johannes Krause 1 & Stephan Schiffels 1 1234567890():,; European population history has been shaped by migrations of people, and their subsequent admixture. Recently, ancient DNA has brought new insights into European migration events linked to the advent of agriculture, and possibly to the spread of Indo-European languages. However, little is known about the ancient population history of north-eastern Europe, in particular about populations speaking Uralic languages, such as Finns and Saami. Here we analyse ancient genomic data from 11 individuals from Finland and north-western Russia. We show that the genetic makeup of northern Europe was shaped by migrations from Siberia that began at least 3500 years ago. This Siberian ancestry was subsequently admixed into many modern populations in the region, particularly into populations speaking Uralic languages today. Additionally, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age, which adds to the historical and linguistic information about the population history of Finland. 1 Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany. 2 Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070 Tübingen, Germany. 3 Department of Biosciences, University of Helsinki, PL 56 (Viikinkaari 9), 00014 Helsinki, Finland.
    [Show full text]
  • 280419 EU Project Kepler
    EU Project Kepler: Community-Based Observing and Societal Needs Work Report, April 2019 1 Tero Mustonen (editor) with regional coordinators and authors Kaisu Mustonen Jan Saijets Pauliina Feodoroff Jevgeni Kirillov Stefan Mikaelsson Camilla Brattland 2 Contents I. Introduction and Scope 4 II. Materials and Methods 6 III. Needs 13 Sweden 13 Finland 18 Norway 30 NW Russia 32 IV. Gaps 43 Sweden 43 Finland 43 Norway 50 NW Russia 55 V. Priorities 59 Sweden 62 Finland 64 NW Russia 64 VI. Conclusions 69 References 73 3 I. Introduction and Scope Participants of the Inari Kepler Workshop: Stefan Mikaelsson, Pauliina Feodoroff, Kaisu Mustonen, Tero Mustonen, Eirik Malnes, Jevgeni Kirillov. Snowchange, 2019 4 The purpose of this report is to review the stakeholder needs and community-based observations for the EU project “Kepler”1. It will focus on the remote sensing needs of the local and Indigenous communities of NW Russia, Sweden, Finland and Norway. The approach includes a discussion of cryospheric hazards and traditional weather observation and prediction materials from the Sámi communities. It has been produced to capture the results of the WP 1 of the Kepler project. Regional Coordinator Jevgeni Kirillov discusses land use changes in Ponoi watershed. Snowchange, 2019 The science lead for the report has been Tero Mustonen from Snowchange Co-op. Co-authors for the regional chapters and cryospheric hazards include 1 https://kepler-polar.eu/home/. KEPLER is a multi-partner initiative, built around the operational European Ice Services and Copernicus information providers, to prepare a roadmap for Copernicus to deliver an improved European capacity for monitoring and forecasting the Polar Regions.
    [Show full text]
  • Vegetation and Lake Changes on the Southern Taymyr Peninsula, Northern Siberia, During the Last 300 Years Inferred from Pollen and Pediastrum Green Algae Records
    Mathematisch-Naturwissenschaftliche Fakultät Bastian Niemeyer | Ulrike Herzschuh | Luidmila Pestryakova Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records Suggested citation referring to the original publication: The Holocene 25(4) (2015) DOI https://doi.org/10.1177/0959683614565954 ISSN (print) 0959-6836 ISSN (online) 1477-0911 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 421 ISSN 1866-8372 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404880 HOL0010.1177/0959683614565954The HoloceneNiemeyer et al. 565954research-article2015 Research paper The Holocene 2015, Vol. 25(4) 596 –606 Vegetation and lake changes on the © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav southern Taymyr peninsula, northern DOI: 10.1177/0959683614565954 Siberia, during the last 300 years inferred hol.sagepub.com from pollen and Pediastrum green algae records Bastian Niemeyer,1 Ulrike Herzschuh1,2 and Luidmila Pestryakova3 Abstract Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a 210Pb/137Cs dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change.
    [Show full text]
  • The Industrial North.Pdf
    RISK AND SAFETY INDUSTRIAL NORTH NUCLEAR TECHNOLOGIES AND ENVIRONMENT Risk and Safety Industrial North Nuclear Technologies and Environment Moscow 2004 The Industrial North. Nuclear Technologies and Environment. — Moscow, «Komtechprint» Publishing House, 2004, 40 p. ISBN 5-89107-053-7 The edition addresses specialists of the legislative /executive authorities and those of local government of the north-west region; activists of public environmental movements; and teachers and students of higher educa- tion institutes as well as all those who are interested in the problems of stable development of the Russian North. This document is prepared by the Nuclear Safety Institute (IBRAE RAS) under work sponsored by the United States Department of Energy. Neither the United States Government, nor any agency thereof including the U.S. Department of Energy and any and all employees of the U.S. Government, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific entity, product, process, or service by name, trade name, trademark, manufacturer, or otherwise does not neces- sarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. ISBN 5-89107-053-7 Ó IBRAE RAS, 2004 Ó«Komtechprint», 2004 (Design) INTRODUCTION Industrialization of the majority of Russian regions took part of the brochure is dedicated to the forecast, preven- place during an era when environmental safety was not tion and mitigation of nuclear/radiological emergencies.
    [Show full text]
  • A Polar System of Intercontinental Bird Migration Thomas Alerstam1,*, Johan Ba¨Ckman1, Gudmundur A
    Proc. R. Soc. B (2007) 274, 2523–2530 doi:10.1098/rspb.2007.0633 Published online 7 August 2007 A polar system of intercontinental bird migration Thomas Alerstam1,*, Johan Ba¨ckman1, Gudmundur A. Gudmundsson2, Anders Hedenstro¨m3, Sara S. Henningsson1,Ha˚kan Karlsson1, Mikael Rose´n1 and Roine Strandberg1 1Department of Animal Ecology, and 3Department of Theoretical Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden 2Icelandic Institute of Natural History, Hlemmur 3, PO Box 5320, 125 Reykjavik, Iceland Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 648 N in Bering Strait up to latitude 758 N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian–American bird migration system in a wide Arctic sector between longitudes 1108 Eand1308 W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3–5 km).
    [Show full text]
  • Subject of the Russian Federation)
    How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country.
    [Show full text]
  • Mountain-Derived Versus Shelf-Based Glaciations on the Western Taymyr Peninsula, Siberia Christian Hjort1 & Svend Funder2
    Mountain-derived versus shelf-based glaciations on the western Taymyr Peninsula, Siberia Christian Hjort1 & Svend Funder2 1 Quaternary Sciences, Lund University, GeoCenter II, Sölvegatan 12, SE-223 62 Lund, Sweden 2 Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark Keywords Abstract Siberian geology; glacial inception; glacial history. The early Russian researchers working in central Siberia seem to have preferred scenarios in which glaciations, in accordance with the classical gla- Correspondence ciological concept, originated in the mountains. However, during the last 30 C. Hjort, Quaternary Sciences, Lund years or so the interest in the glacial history of the region has concentrated on University, GeoCenter II, Sölvegatan 12, ice sheets spreading from the Kara Sea shelf. There, they could have originated SE-223 62 Lund, Sweden. E-mail: from ice caps formed on areas that, for eustatic reasons, became dry land [email protected] during global glacial maximum periods, or from grounded ice shelves. Such ice doi:10.1111/j.1751-8369.2008.00068.x sheets have been shown to repeatedly inundate much of the Taymyr Peninsula from the north-west. However, work on westernmost Taymyr has now also documented glaciations coming from inland. On at least two occasions, with the latest one dated to the Saale glaciation (marine isotope stage 6 [MIS 6]), warm-based, bedrock-sculpturing glaciers originating in the Byrranga Moun- tains, and in the hills west of the range, expanded westwards, and at least once did such glaciers, after moving 50–60 km or more over the present land areas, cross today’s Kara Sea coastline.
    [Show full text]
  • Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012)
    Remote Sens. 2014, 6, 2296-2316; doi:10.3390/rs6032296 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012) Marcel Urban 1,*, Matthias Forkel 2, Jonas Eberle 1, Christian Hüttich 1, Christiane Schmullius 1 and Martin Herold 3 1 Department for Earth Observation, Friedrich-Schiller-University, Jena 07743, Germany; E-Mails: [email protected] (J.E.); [email protected] (C.H.); [email protected] (C.S.) 2 Department for Biochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena 07745, Germany; E-Mail: [email protected] 3 Centre for Geo-Information, Wageningen University, Wageningen 6700AA, The Netherlands; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-3-641-948-887; Fax: +49-3-641-948-882. Received: 22 November 2013; in revised form: 19 February 2014 / Accepted: 5 March 2014 / Published: 12 March 2014 Abstract: Arctic ecosystems have been afflicted by vast changes in recent decades. Changes in temperature, as well as precipitation, are having an impact on snow cover, vegetation productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. The coupled climate-vegetation change in the arctic is thought to be a positive feedback in the Earth system, which can potentially further accelerate global warming. This study focuses on the co-occurrence of temperature, precipitation, snow cover, and vegetation greenness trends between 1981 and 2012 in the pan-arctic region based on coarse resolution climate and remote sensing data, as well as ground stations.
    [Show full text]
  • The Periglacial Climate and Environment in Northern Eurasia
    ARTICLE IN PRESS Quaternary Science Reviews 23 (2004) 1333–1357 The periglacial climate andenvironment in northern Eurasia during the Last Glaciation Hans W. Hubbertena,*, Andrei Andreeva, Valery I. Astakhovb, Igor Demidovc, Julian A. Dowdeswelld, Mona Henriksene, Christian Hjortf, Michael Houmark-Nielseng, Martin Jakobssonh, Svetlana Kuzminai, Eiliv Larsenj, Juha Pekka Lunkkak, AstridLys a(j, Jan Mangerude, Per Moller. f, Matti Saarnistol, Lutz Schirrmeistera, Andrei V. Sherm, Christine Siegerta, Martin J. Siegertn, John Inge Svendseno a Alfred Wegener Institute for Polar and Marine Research (AWI), Telegrafenberg A43, Potsdam D-14473, Germany b Geological Faculty, St. Petersburg University, Universitetskaya 7/9, St. Petersburg 199034, Russian Federation c Institute of Geology, Karelian Branch of Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk 125610, Russian Federation d Scott Polar Research Institute and Department of Geography, University of Cambridge, Cambridge CBZ IER, UK e Department of Earth Science, University of Bergen, Allegt.! 41, Bergen N-5007, Norway f Quaternary Science, Department of Geology, Lund University, Geocenter II, Solvegatan. 12, Lund Sweden g Geological Institute, University of Copenhagen, Øster Voldgade 10, Copenhagen DK-1350, Denmark h Center for Coastal and Ocean Mapping, Chase Ocean Engineering Lab, University of New Hampshire, Durham, NH 03824, USA i Paleontological Institute, RAS, Profsoyuznaya ul., 123, Moscow 117868, Russia j Geological Survey of Norway, PO Box 3006 Lade, Trondheim N-7002, Norway
    [Show full text]
  • Fluctuating Asymmetry of Leaves of Betula Pubescens Ehrh
    BRDEM-2019 International applied research conference «Biological Resources Development and Environmental Management» Volume 2020 Conference Paper Fluctuating Asymmetry of Leaves of Betula pubescens Ehrh. for Assessment of Pollution of the Urban Environment of the Kola North Natalya Saltan1,2, Ekaterina Svyatkovskaya1, and Nadezhda Trostenyuk1 1Polar Alpine Botanical Garden and Institute, Kola Science Centre of Russian Academia of Sciences, Kirovsk-6, Russia 2Murmansk State Technical University, Murmansk, Russia Abstract The results of determining the fluctuating asymmetry (FA) index of Betula pubescens leaves as well as the state of birches in general, as an aboriginal species in the Murmansk region to assess the pollution of urban ecosystems of the Kola North (Murmansk, Apatity, Olenegorsk, Polyarnye Zori, Kandalaksha) in the zone of influence of railway transport have been presented in the article. It has been shown that the most weakened birches grow in Kandalaksha and Olenegorsk, while in Kandalaksha area, there are more than 10% of dead trees. It has been revealed that the highest FA index Corresponding Author: Natalya Saltan which characterizes the critical state of plants and the high level of environmental [email protected] pollution is observed in Olenegorsk. The increased level of FA has also been in Kandalaksha and Polyarnye Zori. The comparative analysis of the state of plants Received: 24 December 2019 and FA index showed existence of functional interrelation only in Kandalaksha and Accepted: 9 January 2020 Olenegorsk when with a significant proportion of weakened trees the indicator of FA Published: 15 January 2020 is the highest. Due to the fact that the increase in the level of FA is influenced by Publishing services provided by stress factors caused not only by pollution, the method of assessing the quality of the Knowledge E environment by the fluctuating asymmetry should be used in complex with other studies.
    [Show full text]
  • Biomonitoring of the Toxic Effects of Industrial Emissions
    E3S Web of Conferences 295, 03001 (2021) https://doi.org/10.1051/e3sconf/202129503001 WFSDI 2021 Biomonitoring of the toxic effects of industrial emissions Natalia Vasilevskaya*, and Polina Osechinskaya Murmansk Arctic State University, 183038 Murmansk, Russia Abstract. The article presents results of studying the impact of industrial emissions of the Apatit project (Murmansk region) on the fertility and sterility of pollen of Scotch pine (Pinus sylvestris L.). A low share of fertile pollen (49.3–57.4%) and high ratio of sterile pollen (42.6–50.7%) are revealed in the samples from the city of Apatity under study. The study calculated the palynotoxic effect of the industrial emissions. Shown the toxic effect of emissions of the apatite-nepheline complex on male gametophyte of Scotch pine and the process of gamete formation. The ecological safety of the city of Apatity is closely related to the problems of the complex use of apatite-nepheline ores and the minimization of storage of waste in tailing dumps. 1 Introduction The modern concept of sustainable development is based on three important constituents: economic, social and environmental. The main goal of sustainable development in the field of ecology is the stability of ecological systems, especially under conditions of increasing chemical pollution caused by anthropogenic factor. One of the conditions required to maintain the environmental sustainability of areas with industrial impact is the assessment of the state of the environment. The industry of the Arctic zone of Russia is mainly focused on the use of natural mineral resources. In the Murmansk region, it is based on the mining complex, which includes enterprises of the extractive, metallurgical, mining and chemical industries Most extensively mined are copper-nickel, apatite-nepheline, apatite-magnetite, iron and rare metal ores.
    [Show full text]