2 Global Distribution, Diversity and Human Alterations of Wetland Resources

Total Page:16

File Type:pdf, Size:1020Kb

2 Global Distribution, Diversity and Human Alterations of Wetland Resources 2 Global Distribution, Diversity and Human Alterations of Wetland Resources DENNIS F. WHIGHAM Smithsonian Environmental Research Center, Edgewater, USA INTRODUCTION Wetlands of International Importance Especially as Waterfowl Habitat, published in 1971, gives: This chapter outlines the distribution and ... wetlands are areas of marsh, fen, peatland or water, diversity of wetland resources and examines the whether natural or artificial, permanent or tempo­ types of human activities that have resulted in rary, with water that is static or flowing, fresh, brack­ widespread alteration. The term 'wetland' has a ish or salt, including areas of marine water the depth variety of meanings, and examples are given of of which at low tide does not exceed six metres. the terminology used to describe different types Another widely used wetland definition was of wetlands. The processes responsible for the for­ developed by the US Fish and Wildlife Service for mation and persistence of wetlands are indicated purposes of bringing consistency to an ongoing and consideration is given to human perceptions national debate related to inventory, regulation of these ecosystems and threats to them from and conservation of wetlands in the United States both natural and anthropogenic activities. (Cowardin et al. 1979; Mitsch and Gosselink 2000; Tiner 1996). The Cowardin et al. definition, developed as part of a classification system, is: DEFINITIONS AND CLASSIFICAnON ... lands transitional between terrestrial and aquatic Many definitions of wetlands have been devel­ systems where the water table is usually at or near the oped (Maltby 1991; Dugan 1993; Mitsch and surface or the land is covered by shallow water. For the purposes of this classification wetlands must have one Gosselink 2000; Tiner 1996) and some of them or more of the following three attributes: (1) at least have been changed over time, particularly in the periodically, the land supports predominantly hydro­ US, in response to an increased understanding phytes; (2.1 the substrate is predominantly undrained of wetland ecology and to political arguments hydric soil; and (3) the substrate is nonsoil and is satu­ (National Research Council 1995). Two examples rated with water or covered by shallow water at some of wetland definition demonstrate the range of time during the growing season of each year. ('nonsoil' considerations that have been used to describe simply means 'not soil' e.g. rock, undecomposed lit­ their characteristics. The most widely known and ter, or the sediments of a water body too deep for the internationally adopted wetland definition was growth of rooted plants (usually >2.m-3m)). developed for purposes of providing international Both definitions communicate the importance protection for waterfowl across the widest possible of vegetation and water in the identification, range of wetlands. The Ramsar Convention on development and persistence of wetlands, and the Cowardin et al. definition also recognises The Wetlands Handbook, 1st edition. Edited by the importance of substrate conditions. The two E. Maltby and T. Barker. © 2.009 Blackwell Publishing, descriptions collectively identify the essential ele­ ISBN 978-0-632.-052.55-4 ments of a robust definition of wetlands: hydrology, 44 DENNIS F. WHIGHAM vegetation and substrates. Most wetland defini­ marshes and mangroves. Inland wetlands were tions are not, however, particularly useful when freshwater marshes, northern peatlands, south­ there is a legal requirement to determine whether ern deepwater swamps and riparian wetlands. or not a given habitat should be classified as a While the wetland terms used by Dugan (1993), wetland or when wetland delineation is required. Maltby (1991) and Mitsch and Gosselink (2000) The issues of wetland identification and delin­ are widely recognised, the reader should be aware eation have been particularly contentious in that the use of common terms can lead to confu­ the United States and many efforts have been sion because names for a single type of wetland directed toward providing a definition that can can vary from one language to another (Scott be used to develop methods to identify and delin­ and Jones 1995). At times, common terms used eate wetlands (Tiner 2000). Tiner emphasised to describe types of wetlands can be confusing. that a robust wetland definition that can provide The Ramsar definition given above, lists fens and effective guidance toward wetland identification peatlands, suggesting that they are separate types and delineation must include the three elements of wetlands. Gore (1983) defined fens as peat accu­ listed above (hydrology, vegetation, soil). He also mulating wetlands that receive rainwater and suggested that a tiered approach be applied in drainage from surrounding mineral soil and usu­ application of identification procedures. Obvious ally support marsh-like vegetation. He defined wetlands can be identified by rapid assessments peatland as a generic term for any wetland that using vegetation, hydrology or soils alone, while accumulates partially decayed plant matter (Gore wetlands that are more difficult to identify require 1983), indicating that fens are a type of peatland. additional effort and multiple indicators of these It is preferred to describe all active peat-forming elements. No matter how wetlands are defined, it wetlands as mires, and separate them into fens is common practice to use Widely accepted terms and bogs according to whether they are fed pre­ to describe different types. dominantly by groundwater or rainfall. Despite Dugan described globally distributed wetland the danger of confusion it is nevertheless useful types based primarily on geomorphic position to examine the salient characteristics of the most (Dugan 1993). Estuaries, mangroves and tidal common categories found in the literature. flats are wetlands and wetland habitats associ­ ated with coastal features that are tidally influ­ Marshes enced. Floodplains and deltas are systems that contain wetlands associated with rivers with var­ Marshes (Figure 2.1) are wetlands dominated by ious flooding regimes. Marshes, lakes, peatlands herbaceous vascular plants, the stems of which and forested swamps are terms used by Dugan emerge above the water surface. Marshes occur to describe wetlands associated with non-tidal in areas that are frequently or continuously inland habitats. Maltby (1991) also described inundated with water and they are most often general wetland types based on broad features associated with mineral soils that do not accu­ such as dominant vegetation (marshes, swamps), mulate peat. Typically, dominant plant species soil characteristics (peatlands), geomorphic fea­ in marshes are reeds, rushes, grasses, and sedges tures (floodplain wetlands, lakes, estuaries and that are characterised by thin 'grass-like' leaves. lagoons), geographic location (mangroves, Nipa Marshes, however, can also contain a wide swamps (Nipa palm, Nipa fructicans), and tidal variety of plant species with many different life freshwater swamp forests) and human activi­ forms. Freshwater tidal marshes, for example, ties (artificial wetlands). Mitsch and Gosselink can be dominated by annuals and perennials (2000) recognised seven types of wetlands based that range in leaf form from grass-like to broad­ on whether they were associated with coastal leaved (Simpson et al. 1983). Marshes have been (tidal) or inland (non-tidal) habitats. Coastal wet­ studied extensively because of their importance lands included tidal salt marshes, tidal freshwater as waterfowl habitat (Weller 1994) and many Distribution and Diversity of Wetland Resources 45 Fig. 2.1 The author standing in a stream channel at Fig. 2.2 Richard Hauer in a freshwater swamp low tide in a freshwater tidal emergent wetland along dominated by Acer rubrum (Red Maple) and Nyssa the Delaware River (USA). Tidal amplitude is approxi­ aquatica (Water Tupelo) on the Pearl River in mately 3 m. The dominant emergent species in the fore­ Mississippi (USA). (Photo by the authoL) ground is Nuphar advena (Yellow waterlily). (Photo by Robert Simpson.) different types of marsh have been recognised both in the US (e.g. prairie potholes, playas, sali­ nas, salt marshes, brackish marshes, freshwater tidal marshes, vernal pools and Carolina bays) and elsewhere (Semeniuk and Semeniuk 1995). Peatland (often called mire) This is a generic term for any wetland that has at some point accumulated partially decayed plant matter because of incomplete decomposition, usually to a depth less than 30 cm (Figure 2.2). Fig. 2.3 Seiichi Nohara in the Akaiyachi Mire (bog), The term 'mire' refers to those peatlands in central Honshu, Japan. Sphagnum dominated peat has which peat formation is still active. Many terms accumulated to a depth of 150 em. Below the Sphagnum have been developed to describe peat-forming peat are layers of Moliniopsis and Phragmites domi­ wetlands, particularly in Europe (Money). Fens nated peat overlying a layer of volcanic ash and sand can be dominated by herbaceous or woody plant with wood and Phragmites remains. Four Sphagnum species. Bogs are peatlands dominated by herba­ species dominate the existing peat mat. Abundant vas­ ceous or woody species, but they differ from fens cular plants are Phragmites australis, Ilex crenata vaL because the water chemistry resembles that of paludosa, Vaccinium oxycoccus, Moliniopsis japonica, precipitation and the peat is usually formed by Rhynchospora alba and Sasa palmata. (Photo by the the slow decomposition of
Recommended publications
  • Rapid Cultural Inventories of Wetlands in Arab States Including Ramsar Sites and World Heritage Properties
    Rapid cultural inventories of wetlands in Arab states including Ramsar Sites and World Heritage Properties Building greater understanding of cultural values and practices as a contribution to conservation success Tarek Abulhawa – Lead Author Tricia Cummings – Research and Data Analysis Supported by: May 2017 Acknowledgements The report team expresses their utmost appreciation to Ms. Mariam Ali from the Ramsar Secretariat and Ms. Haifaa Abdulhalim from the Tabe’a Programme (IUCN’s programme in partnership with ARC-WH) for their guidance and support on the preparation of this regional assessment. Special gratitude is extended to all the national focal points from the target countries and sites as well as international experts and colleagues from the Ramsar and IUCN networks for their valuable contributions and reviews of assignment reports drafts. Finally, the team wants to take the opportunity to thank all the peoples of the wetlands in the Arab states for their long established commitment to the protection of their wetlands through their cultural values, traditional knowledge and sustainable practices for the benefit of future generations. Cover: Traditional felucca fishing boat, Tunisia. DGF Tunisa Contents Executive summary . 4 Introduction . 9 Methodology . 13 Assessment Results . 21 Algeria . 23 La Vallée d’Iherir . 24 Oasis de Tamantit et Sid Ahmed Timmi. 27 Réserve Intégrale du Lac Tonga . 32 Egypt . 35 Lake Bardawil . 36 Lake Burullus . 41 Wadi El Rayan Protected Area . 44 Iraq . 49 Central Marshes . 52 Hammar Marshes . 55 Hawizeh Marshes . 58 Mauritania . 63 Lac Gabou et le réseau hydrographique du Plateau du Tagant . 64 Parc National du Banc d’Arguin . 67 Parc National du Diawling .
    [Show full text]
  • Anthropogenic Changes in a Mediterranean Coastal Wetland During the Last Century—The Case of Gialova Lagoon, Messinia, Greece
    water Review Anthropogenic Changes in a Mediterranean Coastal Wetland during the Last Century—The Case of Gialova Lagoon, Messinia, Greece Giorgos Maneas 1,2,*, Eirini Makopoulou 1, Dimitris Bousbouras 3, Håkan Berg 1 and Stefano Manzoni 1,4 1 Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden; [email protected] (E.M.); [email protected] (H.B.); [email protected] (S.M.) 2 Navarino Environmental Observatory, 24001 SW Messinia, Greece 3 Hellenic Ornithological Society, 10681 Athens, Greece; [email protected] 4 Bolin Centre for Climate Research, 10691 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +30-6979809570 Received: 16 December 2018; Accepted: 12 February 2019; Published: 19 February 2019 Abstract: Human interventions during the last 70 years have altered the characteristics of the Gialova Lagoon, a coastal wetland that is part of a wider Natura 2000 site. In this study, we explore how human interventions and climate altered the wetland’s hydrological conditions and habitats, leading to changing wetland functions over time. Our interpretations are based on a mixed methodological approach combining conceptual hydrologic models, analysis of aerial photographs, local knowledge, field observations, and GIS (Geographic Information System) analyses. The results show that the combined effects of human interventions and climate have led to increased salinity in the wetland over time. As a result, the fresh and brackish water marshes have gradually been turned into open water or replaced by halophytic vegetation with profound ecological implications. Furthermore, current human activities inside the Natura 2000 area and in the surrounding areas could further impact on the water quantity and quality in the wetland, and on its sensitive ecosystems.
    [Show full text]
  • Biogeochemistry of Mediterranean Wetlands: a Review About the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions
    water Review Biogeochemistry of Mediterranean Wetlands: A Review about the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions Inmaculada de Vicente 1,2 1 Departamento de Ecología, Universidad de Granada, 18071 Granada, Spain; [email protected]; Tel.: +34-95-824-9768 2 Instituto del Agua, Universidad de Granada, 18071 Granada, Spain Abstract: Although Mediterranean wetlands are characterized by extreme natural water level fluctu- ations in response to irregular precipitation patterns, global climate change is expected to amplify this pattern by shortening precipitation seasons and increasing the incidence of summer droughts in this area. As a consequence, a part of the lake sediment will be exposed to air-drying in dry years when the water table becomes low. This periodic sediment exposure to dry/wet cycles will likely affect biogeochemical processes. Unexpectedly, to date, few studies are focused on assessing the effects of water level fluctuations on the biogeochemistry of these ecosystems. In this review, we investigate the potential impacts of water level fluctuations on phosphorus dynamics and on greenhouse gases emissions in Mediterranean wetlands. Major drivers of global change, and specially water level fluctuations, will lead to the degradation of water quality in Mediterranean wetlands by increasing the availability of phosphorus concentration in the water column upon rewetting of dry sediment. CO2 fluxes are likely to be enhanced during desiccation, while inundation is likely to decrease cumulative CO emissions, as well as N O emissions, although increasing CH emissions. Citation: de Vicente, I. 2 2 4 Biogeochemistry of Mediterranean However, there exists a complete gap of knowledge about the net effect of water level fluctuations Wetlands: A Review about the Effects induced by global change on greenhouse gases emission.
    [Show full text]
  • An Introduction to the Bofedales of the Peruvian High Andes
    An introduction to the bofedales of the Peruvian High Andes M.S. Maldonado Fonkén International Mire Conservation Group, Lima, Peru _______________________________________________________________________________________ SUMMARY In Peru, the term “bofedales” is used to describe areas of wetland vegetation that may have underlying peat layers. These areas are a key resource for traditional land management at high altitude. Because they retain water in the upper basins of the cordillera, they are important sources of water and forage for domesticated livestock as well as biodiversity hotspots. This article is based on more than six years’ work on bofedales in several regions of Peru. The concept of bofedal is introduced, the typical plant communities are identified and the associated wild mammals, birds and amphibians are described. Also, the most recent studies of peat and carbon storage in bofedales are reviewed. Traditional land use since prehispanic times has involved the management of water and livestock, both of which are essential for maintenance of these ecosystems. The status of bofedales in Peruvian legislation and their representation in natural protected areas and Ramsar sites is outlined. Finally, the main threats to their conservation (overgrazing, peat extraction, mining and development of infrastructure) are identified. KEY WORDS: cushion bog, high-altitude peat; land management; Peru; tropical peatland; wetland _______________________________________________________________________________________ INTRODUCTION organic soil or peat and a year-round green appearance which contrasts with the yellow of the The Tropical Andes Cordillera has a complex drier land that surrounds them. This contrast is geography and varied climatic conditions, which especially striking in the xerophytic puna. Bofedales support an enormous heterogeneity of ecosystems are also called “oconales” in several parts of the and high biodiversity (Sagástegui et al.
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • Ancient Fennoscandian Genomes Reveal Origin and Spread of Siberian Ancestry in Europe
    ARTICLE DOI: 10.1038/s41467-018-07483-5 OPEN Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe Thiseas C. Lamnidis1, Kerttu Majander1,2,3, Choongwon Jeong1,4, Elina Salmela 1,3, Anna Wessman5, Vyacheslav Moiseyev6, Valery Khartanovich6, Oleg Balanovsky7,8,9, Matthias Ongyerth10, Antje Weihmann10, Antti Sajantila11, Janet Kelso 10, Svante Pääbo10, Päivi Onkamo3,12, Wolfgang Haak1, Johannes Krause 1 & Stephan Schiffels 1 1234567890():,; European population history has been shaped by migrations of people, and their subsequent admixture. Recently, ancient DNA has brought new insights into European migration events linked to the advent of agriculture, and possibly to the spread of Indo-European languages. However, little is known about the ancient population history of north-eastern Europe, in particular about populations speaking Uralic languages, such as Finns and Saami. Here we analyse ancient genomic data from 11 individuals from Finland and north-western Russia. We show that the genetic makeup of northern Europe was shaped by migrations from Siberia that began at least 3500 years ago. This Siberian ancestry was subsequently admixed into many modern populations in the region, particularly into populations speaking Uralic languages today. Additionally, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age, which adds to the historical and linguistic information about the population history of Finland. 1 Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany. 2 Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070 Tübingen, Germany. 3 Department of Biosciences, University of Helsinki, PL 56 (Viikinkaari 9), 00014 Helsinki, Finland.
    [Show full text]
  • Assessment on Peatlands, Biodiversity and Climate Change: Main Report
    Assessment on Peatlands, Biodiversity and Climate change Main Report Published By Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen First Published in Electronic Format in December 2007 This version first published in May 2008 Copyright © 2008 Global Environment Centre & Wetlands International Reproduction of material from the publication for educational and non-commercial purposes is authorized without prior permission from Global Environment Centre or Wetlands International, provided acknowledgement is provided. Reference Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva , T., Silvius, M. and Stringer, L. (Eds.) 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report . Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. Reviewer of Executive Summary Dicky Clymo Available from Global Environment Centre 2nd Floor Wisma Hing, 78 Jalan SS2/72, 47300 Petaling Jaya, Selangor, Malaysia. Tel: +603 7957 2007, Fax: +603 7957 7003. Web: www.gecnet.info ; www.peat-portal.net Email: [email protected] Wetlands International PO Box 471 AL, Wageningen 6700 The Netherlands Tel: +31 317 478861 Fax: +31 317 478850 Web: www.wetlands.org ; www.peatlands.ru ISBN 978-983-43751-0-2 Supported By United Nations Environment Programme/Global Environment Facility (UNEP/GEF) with assistance from the Asia Pacific Network for Global Change Research (APN) Design by Regina Cheah and Andrey Sirin Printed on Cyclus 100% Recycled Paper. Printing on recycled paper helps save our natural
    [Show full text]
  • Vegetation and Lake Changes on the Southern Taymyr Peninsula, Northern Siberia, During the Last 300 Years Inferred from Pollen and Pediastrum Green Algae Records
    Mathematisch-Naturwissenschaftliche Fakultät Bastian Niemeyer | Ulrike Herzschuh | Luidmila Pestryakova Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records Suggested citation referring to the original publication: The Holocene 25(4) (2015) DOI https://doi.org/10.1177/0959683614565954 ISSN (print) 0959-6836 ISSN (online) 1477-0911 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 421 ISSN 1866-8372 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404880 HOL0010.1177/0959683614565954The HoloceneNiemeyer et al. 565954research-article2015 Research paper The Holocene 2015, Vol. 25(4) 596 –606 Vegetation and lake changes on the © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav southern Taymyr peninsula, northern DOI: 10.1177/0959683614565954 Siberia, during the last 300 years inferred hol.sagepub.com from pollen and Pediastrum green algae records Bastian Niemeyer,1 Ulrike Herzschuh1,2 and Luidmila Pestryakova3 Abstract Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a 210Pb/137Cs dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change.
    [Show full text]
  • A Polar System of Intercontinental Bird Migration Thomas Alerstam1,*, Johan Ba¨Ckman1, Gudmundur A
    Proc. R. Soc. B (2007) 274, 2523–2530 doi:10.1098/rspb.2007.0633 Published online 7 August 2007 A polar system of intercontinental bird migration Thomas Alerstam1,*, Johan Ba¨ckman1, Gudmundur A. Gudmundsson2, Anders Hedenstro¨m3, Sara S. Henningsson1,Ha˚kan Karlsson1, Mikael Rose´n1 and Roine Strandberg1 1Department of Animal Ecology, and 3Department of Theoretical Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden 2Icelandic Institute of Natural History, Hlemmur 3, PO Box 5320, 125 Reykjavik, Iceland Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 648 N in Bering Strait up to latitude 758 N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian–American bird migration system in a wide Arctic sector between longitudes 1108 Eand1308 W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3–5 km).
    [Show full text]
  • Mountain-Derived Versus Shelf-Based Glaciations on the Western Taymyr Peninsula, Siberia Christian Hjort1 & Svend Funder2
    Mountain-derived versus shelf-based glaciations on the western Taymyr Peninsula, Siberia Christian Hjort1 & Svend Funder2 1 Quaternary Sciences, Lund University, GeoCenter II, Sölvegatan 12, SE-223 62 Lund, Sweden 2 Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark Keywords Abstract Siberian geology; glacial inception; glacial history. The early Russian researchers working in central Siberia seem to have preferred scenarios in which glaciations, in accordance with the classical gla- Correspondence ciological concept, originated in the mountains. However, during the last 30 C. Hjort, Quaternary Sciences, Lund years or so the interest in the glacial history of the region has concentrated on University, GeoCenter II, Sölvegatan 12, ice sheets spreading from the Kara Sea shelf. There, they could have originated SE-223 62 Lund, Sweden. E-mail: from ice caps formed on areas that, for eustatic reasons, became dry land [email protected] during global glacial maximum periods, or from grounded ice shelves. Such ice doi:10.1111/j.1751-8369.2008.00068.x sheets have been shown to repeatedly inundate much of the Taymyr Peninsula from the north-west. However, work on westernmost Taymyr has now also documented glaciations coming from inland. On at least two occasions, with the latest one dated to the Saale glaciation (marine isotope stage 6 [MIS 6]), warm-based, bedrock-sculpturing glaciers originating in the Byrranga Moun- tains, and in the hills west of the range, expanded westwards, and at least once did such glaciers, after moving 50–60 km or more over the present land areas, cross today’s Kara Sea coastline.
    [Show full text]
  • Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012)
    Remote Sens. 2014, 6, 2296-2316; doi:10.3390/rs6032296 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012) Marcel Urban 1,*, Matthias Forkel 2, Jonas Eberle 1, Christian Hüttich 1, Christiane Schmullius 1 and Martin Herold 3 1 Department for Earth Observation, Friedrich-Schiller-University, Jena 07743, Germany; E-Mails: [email protected] (J.E.); [email protected] (C.H.); [email protected] (C.S.) 2 Department for Biochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena 07745, Germany; E-Mail: [email protected] 3 Centre for Geo-Information, Wageningen University, Wageningen 6700AA, The Netherlands; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-3-641-948-887; Fax: +49-3-641-948-882. Received: 22 November 2013; in revised form: 19 February 2014 / Accepted: 5 March 2014 / Published: 12 March 2014 Abstract: Arctic ecosystems have been afflicted by vast changes in recent decades. Changes in temperature, as well as precipitation, are having an impact on snow cover, vegetation productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. The coupled climate-vegetation change in the arctic is thought to be a positive feedback in the Earth system, which can potentially further accelerate global warming. This study focuses on the co-occurrence of temperature, precipitation, snow cover, and vegetation greenness trends between 1981 and 2012 in the pan-arctic region based on coarse resolution climate and remote sensing data, as well as ground stations.
    [Show full text]
  • Legal Protection Assessment of Different Inland Wetlands in Chile Patricia Möller1,2* and Andrés Muñoz-Pedreros3
    Möller and Muñoz-Pedreros Revista Chilena de Historia Natural 2014, 87:23 http://www.revchilhistnat.com/content/87/1/23 RESEARCH Open Access Legal protection assessment of different inland wetlands in Chile Patricia Möller1,2* and Andrés Muñoz-Pedreros3 Abstract Background: Inland wetlands are well represented ecosystems in Chile that are subjected to various pressures affecting conservation. Protection means legal and administrative initiatives which promote the protection and/or preservation of a wetland, either in its entirety, considering their areas of influence or its components. Results: The aim of this work is to develop a methodology for estimating the value of protection of different types of inland wetlands in Chile. For this purpose: a) the Chilean regulations in relation to the issues of biodiversity, wetlands and water resources were compiled; (b) such legislation and its application were analyzed, (c) protection and restriction values of each legal standard was estimated, and then total protection value of standards applied to six types of wetlands in study. 47 legal rules related to protection of inland wetlands and eight directly or indirectly affecting conservation and wise use of wetlands were identified. Conclusions: In Chile there is no specific statutory rules or regulations on wetlands. Current legal standards do not protect equally the different types of inland wetlands, being swamp forests, peatlands and brackish Andean lakes less protected. To improve wetlands conservation, incentives promoting wetlands destruction must be eliminated and promulgate specific regulations for proper management and conservation. Keywords: Inland wetlands; Legal standards; Real protection; Wetland protection Background Wetlands support high biodiversity and are presently Chile is highly diverse in limnic systems mostly recog- recognized as the most threatened systems by human nized as wetlands and defined as ‘areas of marsh, fen, activities (Marín et al.
    [Show full text]