Energistics Unit of Measure Usage Guide

Total Page:16

File Type:pdf, Size:1020Kb

Energistics Unit of Measure Usage Guide Energistics Unit of Measure Usage Guide Version 1.0 A set of resources that defines a standard unit of Energistics measure (UOM) dictionary to promote consistent Unit of usage, data exchange, and unit conversion. The Measure set includes the base Energistics Unit of Measure Dictionary and related documentation Standard for creating, implementing, and maintaining a UOM dictionary that is patterned after the Energistics dictionary. Version 1.0 Abstract This document outlines best practices for creating, implementing and maintaining a UOM dictionary that is patterned after the Energistics Unit of Measure Dictionary. Prepared by Energistics Date published June 2014 Document type Usage Guide Keywords: standards, energy, data, information, process, units of measure Energistics Unit of Measure Usage Guide Document Information DOCUMENT VERSION 1.0 DATE June 2014 Language US English Acknowledgements Energistics wishes to thank its member community, the Professional Petroleum Data Management (PPDM™) Association, and the Society of Exploration Geophysicists (SEG) for their contributions to this standard. Usage, Intellectual Property Rights, and Copyright This document was developed using the Energistics Standards Procedures. These procedures help implement Energistics’ requirements for consensus building and openness. Questions concerning the meaning of the contents of this document or comments about the standards procedures may be sent to Energistics at [email protected] . The material described in this document was developed by and is the intellectual property of Energistics. Energistics develops material for open, public use so that the material is accessible and can be of maximum value to everyone. Use of the material in this document is governed by the Energistics Intellectual Property Policy document and the Product Licensing Agreement, both of which can be found on the Energistics website, http://www.energistics.org/legal-policies . All Energistics published materials are freely available for public comment and use. Anyone may copy and share the materials but must always acknowledge Energistics as the source. No one may restrict use or dissemination of Energistics materials in any way. Trademarks Energistics®, Epicentre™, WITSML™, PRODML™, RESQML™, Upstream Standards. Bottom Line Results.®, The Energy Standards Resource Centre™ and their logos are trademarks or registered trademarks of Energistics in the United States. Access, receipt, and/or use of these documents and all Energistics materials are generally available to the public and are specifically governed by the Energistics Product Licensing Agreement (http://www.energistics.org/product-license-agreement ). Other company, product, or service names may be trademarks or service marks of others. V1.0/June 2014 2 Energistics Unit of Measure Usage Guide Amendment History Version Date Comment By 1.0 June 2014 First publication of the standard and document. Energistics V1.0/June 2014 3 Energistics Unit of Measure Usage Guide Table of Contents 1 Introduction ...................................................................................................... 5 1.1 Audience, Purpose and Scope ................................................................................. 5 1.2 Resource Set ............................................................................................................ 5 1.2.1 Additional Resources ..................................................................................... 6 1.3 Sources for UOM Standard ...................................................................................... 6 2 Key Concepts ................................................................................................... 7 2.1 Unit Dimension ......................................................................................................... 7 2.2 Quantity Class .......................................................................................................... 8 2.2.1 Guidelines for Specifying a Quantity Class .................................................... 9 2.3 Aliases ...................................................................................................................... 9 3 Special Considerations .................................................................................. 11 3.1 Ratios...................................................................................................................... 11 3.2 Point Temperature versus Temperature Interval ................................................... 11 3.3 Conditions of Measurement ................................................................................... 11 3.3.1 Gauge and Absolute Pressure ..................................................................... 11 3.3.2 Brake Horsepower ....................................................................................... 12 3.3.3 Standard Temperature and Pressure .......................................................... 12 3.3.4 Reservoir and Stock Tank Barrel ................................................................. 14 4 Mapping .......................................................................................................... 15 4.1 Conversion Factors ................................................................................................ 15 4.2 Mapping State ........................................................................................................ 15 4.3 Year ........................................................................................................................ 15 5 Extending a Unit Dictionary ........................................................................... 17 5.1 Creating a New Unit ............................................................................................... 17 5.1.1 Creating a New Atom ................................................................................... 17 5.1.2 Creating a Prefixed Atom ............................................................................. 18 5.1.3 Creating New Derived Symbols ................................................................... 18 5.1.4 Assigning a Category ................................................................................... 19 5.2 Deriving Conversion Data ...................................................................................... 19 5.2.1 Conversion Formulas ................................................................................... 20 5.2.2 Deriving Conversion Information for a Unit Expression ............................... 20 5.2.3 Exact Conversions ....................................................................................... 21 5.3 Validation Tests ...................................................................................................... 21 5.3.1 XSD Schema ................................................................................................ 22 5.3.2 Unit Dimension Set ...................................................................................... 22 5.3.3 Quantity Class Set ....................................................................................... 22 5.3.4 Unit Set ........................................................................................................ 23 5.3.5 Conversion Reference ................................................................................. 23 5.3.6 Class Integer Code (Energistics only) .......................................................... 23 5.3.7 Unit Integer Code (Energistics only) ............................................................ 23 V1.0/June 2014 4 Energistics Unit of Measure Usage Guide 1 Introduction Accurate use, exchange, and conversion of units of measure (UOM) in upstream oil and gas software are crucial. Errors in units of measure can cause serious problems for the accuracy and integrity of earth and reservoir models and the decisions that are based on those models. The Energistics Unit of Measure Standard (the UOM Standard ) represents the collaborative work of Energistics, its member community, the Professional Petroleum Data Management (PPDM™) Association, and the Society of Exploration Geophysicists (SEG) to update previous standards and best practices for use of units of measure used in the upstream oil and gas industry. (For a list of previous standards and specifications included, see Section 1.3 (page 6).) The goal of the UOM Standard is to provide the necessary components and guidelines to improve accuracy and consistency of implementation, usage, exchange, and conversion of units of measure related to all upstream activities. 1.1 Audience, Purpose and Scope This document is intended for IT professionals (e.g., software developers, information architects) who want to implement and maintain in their software a units of measure dictionary patterned after the Energistics Unit of Measure Dictionary , the key component of the UOM Standard . Software that implements Energistics data- exchange standards (e.g., WITSML, PRODML or RESQML) MUST implement the UOM Standard . Implementation of the UOM Standard also includes: • Conformance to the Energistics Unit Symbol Grammar Specification. • Optional, but strongly recommended use of Energistics quantity classes and unit dimensions, vital information that adds usage context to what would otherwise be a bunch of symbols. 1.2 Resource Set All resources that comprise the Energistics Unit of Measure Standard can be downloaded from the Energistics website
Recommended publications
  • In Physical Chemistry
    INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Physical and Biophysical Chemistry Division IUPAC Vc^llclllul LICb . U 111 Lb cillCl Oy 111 DOlo in Physical Chemistry Third Edition Prepared for publication by E. Richard Cohen Tomislav Cvitas Jeremy G. Frey BcTt.il Holmstrom Kozo Kuchitsu R,oberto Marquardt Ian Mills Franco Pavese Martin Quack Jiirgen Stohner Herbert L. Strauss Michio Takanii Anders J Thor The first and second editions were prepared for publication by Ian Mills Tomislav Cvitas Klaus Homann Nikola Kallay Kozo Kuchitsu IUPAC 2007 RSC Publishing CONTENTS v PREFACE ix HISTORICAL INTRODUCTION xi 1 PHYSICAL QUANTITIES AND UNITS 1 1.1 Physical quantities and quantity calculus 3 1.2 Base quantities and derived quantities 4 1.3 Symbols for physical quantities and units 5 1.3.1 General rules for symbols for quantities 5 1.3.2 General rules for symbols for units 5 1.4 Use of the words "extensive", "intensive", "specific", and "molar" 6 1.5 Products and quotients of physical quantities and units 7 1.6 The use of italic and Roman fonts for symbols in scientific publications 7 2 TABLES OF PHYSICAL QUANTITIES 11 2.1 Space and time 13 2.2 Classical mechanics 14 2.3 Electricity and magnetism 16 2.4 Quantum mechanics and quantum chemistry 18 2.4.1 Ab initio Hartree-Fock self-consistent field theory (ab initio SCF) 20 2.4.2 Hartree-Fock-Roothaan SCF theory, using molecular orbitals expanded as linear combinations of atomic-orbital basis . functions (LCAO-MO theory) . 21 2.5 Atoms and molecules 22 2.6 Spectroscopy 25 2.6.1 Symbols for angular
    [Show full text]
  • Homework 1: Exercise 1 Metric - English Conversion [Based on the Chauffe & Jefferies (2007)]
    MAR 110 HW 1: Exercise 1 – Conversions p. 1 Homework 1: Exercise 1 Metric - English Conversion [based on the Chauffe & Jefferies (2007)] 1-1. THE METRIC SYSTEM The French developed the metric system during the 1790s. Unlike the "English" system, in which the difference between smaller and larger units is irregular and has no scientific foundation, the metric system is based on multiples of 10. Smaller and larger units can be obtained simply by moving the decimal point - that is multiplying or dividing by 10. For example, in the "English" system there are 12 inches to a foot (ft), but 3 ft to a yard, and 1760 yards in a mile. By contrast, in the metric system there are 10 m to a decameter (dm), 10 dm to a hectometer (hm), and 10 hm to a kilometer (km). The convenience and regularity of the metric system make it the standard system used in scientific research The basic units of the metric system are the meter for length, gram for mass (weight), liter for volume, and degree Celsius (OC) for temperature. These terms have been defined in terms of practical considerations. For example, one meter is equal to one ten millionth of the distance between the North Pole and the Equator. The gram is the mass of one cubic centimeter (or one millionth of a cubic meter) of water at a temperature of 4°C. The liter is the volume of a cubic decimeter (or one thousandth of a cubic meter). A degree Celsius is one-hundredth of the change in temperature between the freezing and boiling points of water.
    [Show full text]
  • Investigation 6.6.2 - Gradian Measure
    Investigation 6.6.2 - Gradian measure Have you ever wondered why we have 360 degrees in a circle when our number system is base 10? Why not divide the circle into 10 angular units? Or 100? The notion of the “degree” as the base angular unit of measure is generally attributed to the Babylonians. The Babylonian numerical system was sexagesimal (base 60). The number “360” played an essential role in their calendar as it is close to the number of days in a year. Another hypothesis is that the circle divides more naturally into six parts than it does four or ten. Try drawing diameters through a circle cutting it into even parts. I. 6 equal parts II. 4 equal parts III. 10 equal parts Then draw chords by connecting consecutive diameter endpoints. Which method produces equilateral triangles? Which dissected circle has chords congruent to its radius? Now find the central angle of each dissection. Which is most closely related to the Babylonian sexagesimal number system? Now suppose we wanted to derive an angular unit of measure more closely related to our base 10 decimal system. Let us begin by dividing a right angle into 100 units, called “gradians”. (You may have this system on your calculator, denoted “grad”.) a. How many gradians are in one whole circle? b. Convert 180° into gradians. c. How many degrees make 50 gradians? If societies in science fiction have differing number of days in their respective years due to different planetary orbits, it would stand to reason that their methods for measuring angles and circles might be different from our system.
    [Show full text]
  • Aircomforttm
    AirComfort TM Weather and Climate Lesson Plan AirComfort TM Weather and Climate Lesson Plan from HamiltonBuhl® Table of Contents Introduction . 3 Setup . .4 Data Format . 4 Activity 1: Differentiating Weather and Climate . 5 Blank Venn Diagram (Illustration A) 6 Venn Diagram with Answers (Illustration B) 7 For Further Discussion 8 Activity 2: Temperature Scales Conversion . .9 Quick Method and Exact Method Formulae 10 Blank Typical Temperatures Chart 10 Typical Temperatures Chart with Answers 11 For Further Discussion 12 Activity 3: Hangman Joke . .13 Blank Hangman Joke (Illustration C) 14 Hangman Joke with Answer (Illustration D) 15 For Further Discussion 16 Activity 4: Crossword Puzzle . 17. Blank Crossword Puzzle (Illustration E) 18 Crossword Puzzle with Answers (Illustration F) 19 For Further Discussion 20 Activity 5: Weather Measurement Tools . 21. Blank Weather Tools (Worksheet 1) 22 Weather Tools Answers (Worksheet 2) 23 Activity 6: Tracking and Comparing Weather Data . .24 Blank Plotting Chart (Worksheet 3) 25 Examples Plotting Chart (Worksheet 4) 26 For Further Discussion 27 The Fun Doesn’t Stop . 28 Certificate of Achievement . 29 . Sources . .30 TMTM Weather and Climate Lesson Plan AirComfortAirComfort from HamiltonBuhl® Weather and Climate Lesson Plan from HamiltonBuhl® Introduction Table of Contents This HamiltonBuhl® Weather Climate Lesson Plan is made for use with Introduction . 3 AirComfortTM. The educator uses this document as a guide to instruct Setup . .4 elementary school children to enrich their science and math education. Data Format . 4 Activities use these disciplines: Activity 1: Differentiating Weather and Climate . 5 Blank Venn Diagram (Illustration A) 6 1. Internet Usage Venn Diagram with Answers (Illustration B) 7 For Further Discussion 8 2.
    [Show full text]
  • Unit Conversion
    Unit Conversion Subject Area(s) Mathematics and Engineering Associated Unit: Units of Length Activity Title: Unit Conversion Image 1: 2 [position: centered] Figure 1: Units of Measurements Image 1 ADA Description: Figure 1 above shows different units of measurements, this image highlights different measurement that are used in everyday life Caption: Units of Measurements Image file: Figure_1 Source/Rights: http://www.dimensionsguide.com/unit-conversion/ Grade Level _4_ (_3_-_4_) Activity Dependency Time Required 45 Group Size 3-5 Expendable Cost per Group US $0 Summary In this activity students will gain a better understanding of different units of measurements. Students fail to grasp the concept of different units of measurements and conversion at an early stage in their education. The problems that students are asked to solve in classroom such as converting from either yard to feet or feet to inches and so forth may seem simple to us adults and teachers, however to students the arithmetic may be difficult and often the concept of “unit conversion” may be abstract. Although Students may know the conversion factors such as 1 feet is equivalent to 12 inches or 1 yard is equal to 3 feet, they have not yet developed a mental model of the magnitude these units represent (i.e. inches make up feet therefore a foot is larger in magnitude than inches). The goal of this activity is to develop and strengthen the mental representation of different units so that students may convert one unit to another with ease. Furthermore, this activity will also give students a visual and physical representation of the magnitude of feet, yard and inches are.
    [Show full text]
  • Engilab Units 2018 V2.2
    EngiLab Units 2021 v3.1 (v3.1.7864) User Manual www.engilab.com This page intentionally left blank. EngiLab Units 2021 v3.1 User Manual (c) 2021 EngiLab PC All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. "There are two possible outcomes: if the result confirms the Publisher hypothesis, then you've made a measurement. If the result is EngiLab PC contrary to the hypothesis, then you've made a discovery." Document type Enrico Fermi User Manual Program name EngiLab Units Program version v3.1.7864 Document version v1.0 Document release date July 13, 2021 This page intentionally left blank. Table of Contents V Table of Contents Chapter 1 Introduction to EngiLab Units 1 1 Overview ..................................................................................................................................
    [Show full text]
  • Not Made to Measure
    Made in Britain: Not made to measure. Ronnie Cohen © 2011 Ronnie Cohen. All rights reserved. 1 Table of Contents Foreword...............................................................................................................................................5 Introduction..........................................................................................................................................6 Central Role of Measurement in Daily Life.........................................................................................7 Why Measurement Matters..................................................................................................................8 Quest for Honest Measurements since Ancient Times.........................................................................9 Measurement Facts: Did you know that....?.......................................................................................10 Description of the British Imperial System........................................................................................11 Introduction to the British Imperial System..............................................................................11 Units of Length..........................................................................................................................11 Units of Area.............................................................................................................................11 Units of Volume........................................................................................................................12
    [Show full text]
  • Conversion of Units Some Problems in Engineering Mechanics May Involve Units That Are Not in the International System of Units (SI)
    Mechanics 1.3. Conversion of Units Some problems in engineering mechanics may involve units that are not in the International System of Units (SI). In such cases, it may be necessary to convert from one system to another. In other cases the units being used may be within the same system but have a different prefix. This leaflet illustrates examples of both types of conversions. Converting from one system of units to another In the U.S. Customary system of units (FPS) length is measured in feet (ft), force in pounds (lb), and time in seconds (s). The unit of mass, referred to as a slug, is therefore equal to the amount of − matter accelerated at 1 ft s 2, when acted up on by a force of 1 lb (derived from Newton’s second law of Motion F = ma — see mechanics sheet 2.2) this gives that 1 slug = 1 lb ft−1 s2. Table 1 provides some direct conversions factors between FPS and SI units. Quantity FPS Unit of measurement SI Unit of measurement Force lb = 4.4482 N Mass slug = 14.5938 kg Length ft =0.3048m Table 1: Conversion factors Converting from one metric unit to another metric unit If you are converting large units to smaller units, i.e. converting metres to centimetres, you will need to MULTIPLY by a conversion factor. For example, to find the number of centimetres in 523 m, you will need to MULTIPLY 523 by 100. Thus, 523 m = 52 300 cm. If you are converting small units to larger units, i.e.
    [Show full text]
  • Physics and Measurement
    PP UZZLERUZZLER For thousands of years the spinning Earth provided a natural standard for our measurements of time. However, since 1972 we have added more than 20 “leap seconds” to our clocks to keep them synchronized to the Earth. Why are such adjustments needed? What does it take to be a good standard? (Don Mason/The Stock Market and NASA) chapter Physics and Measurement Chapter Outline 1.1 Standards of Length, Mass, and 1.5 Conversion of Units Time 1.6 Estimates and Order-of-Magnitude 1.2 The Building Blocks of Matter Calculations 1.3 Density 1.7 Significant Figures 1.4 Dimensional Analysis 2 ike all other sciences, physics is based on experimental observations and quan- titative measurements. The main objective of physics is to find the limited num- Lber of fundamental laws that govern natural phenomena and to use them to develop theories that can predict the results of future experiments. The funda- mental laws used in developing theories are expressed in the language of mathe- matics, the tool that provides a bridge between theory and experiment. When a discrepancy between theory and experiment arises, new theories must be formulated to remove the discrepancy. Many times a theory is satisfactory only under limited conditions; a more general theory might be satisfactory without such limitations. For example, the laws of motion discovered by Isaac Newton (1642–1727) in the 17th century accurately describe the motion of bodies at nor- mal speeds but do not apply to objects moving at speeds comparable with the speed of light. In contrast, the special theory of relativity developed by Albert Ein- stein (1879–1955) in the early 1900s gives the same results as Newton’s laws at low speeds but also correctly describes motion at speeds approaching the speed of light.
    [Show full text]
  • Teaching Guides; Units of Study (Subject Fields) IDENTIFIERS ESEA Title III
    DOCUMENT RESUME ED 069 524 SE 015 335 AUTHOR Cox, Philip L. TITLE EXploring Linear Measure, Teacher's Guide. INSTITUTION Oakland County Schools, Pontiac, Mich. SPONS AGENCY Bureau of Elementary and Secondary Education (DREW /OE), Washington, D.C. PUB DATE Oct 69 GRANT OEG-68-05635-0 NOTE 226p.; Revised Edition EDRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Curriculum; Instruction; *Instructional Materials; Low Ability Students; Mathematics Education; *Measurement; Metric System; Objectives; *Secondary School Mathematics; *Teaching Guides; Units of Study (Subject Fields) IDENTIFIERS ESEA Title III ABSTRACT This guide to accompany "Exploring Linear Measure," contains all of the student materials in SE 015 334 plus supplemental teacher materials. It includes a listing of terminal objectives, necessary equipment and teaching aids, and resource materials. Answers are given to all problems and suggestions and activities are presented for each section. Related documents are SE 015 334 and SE 015 336 through SE 015 347. This work was prepared under an ESEA Title III contract.(LS) U S Ill PAH l%iis. Co tots'ot Ios ()LICA Ilo% S %I I f 41(f O F ICI Of t DuCst 110h FILMED FROM BEST AVAILABLE COPY 4, sl sos ; EXPLORING LINEAR MEASURE ITY 11 12 13 14 15 16. 19 20 21 22 TENTHS OF ACENTI 1111111111111111111111111111111111111111111111111 9 10 20 21 22 F A CENTIMET 111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111111 13 14 CENTIMETER 41114440 TEACHER'S GUIDE 1 OAKLAND COUNTY MATHEMATICS PROJECT STAFF Dr. Albert P. Shulte, Project Director Mr. Terrence G. Coburn, Assistant Director and Project Writer Dr. David W. Wells, Project Coordinator Mr.
    [Show full text]
  • Introduction
    5606ch01.qxd_lb 9/11/03 9:03 AM Page 1 PART 1 INTRODUCTION CHAPTER PAGE 1 Dimensions, Units, and Their Conversion 5 2 Moles, Density, and Concentration 42 3 Choosing a Basis 78 4 Temperature 89 5 Pressure 99 Part 1 begins your introduction to chemical engineering calculations by re- viewing certain topics underlying the main principles to be discussed. You have al- ready encountered most of these concepts in your basic chemistry and physics courses. Why, then, the need for a review? First, from experience we have found it necessary to restate these familiar basic concepts in a somewhat more precise and clearer fashion; second, you will need practice to develop your ability to analyze and work engineering problems. If you encounter new material as you go through these chapters, or if you flounder over little gaps in your skills or knowledge of old mater- ial, you should devote extra attention to the chapters by solving extra problems in the set that you will find at the end of each chapter. To read and understand the prin- ciples discussed in these chapters is relatively easy; to apply them to different unfa- miliar situations is not. An engineer becomes competent in his or her profession by mastering the techniques developed by one’s predecessors—thereafter comes the time to pioneer new ones. What I hear, I forget; What I see, I remember; What I do, I understand. Confucius Part 1 begins with a discussion of units, dimensions, and conversion factors, and then goes on to review some terms you should already be acquainted with, in- cluding: 1 5606ch01.qxd_lb 9/11/03 9:03 AM Page 2 2 Part 1 Introduction Part 1 You are You want to here get here Material Begin Balances Figure Part 1.1 The bridge to success.
    [Show full text]
  • Measuring Up: How the Highest Performing State (Massachusetts) Compares to the Highest Performing Country (Hong Kong) in Grade 3 Mathematics
    ® AMERICAN INSTITUTES FOR RESEARCH MEASURING UP: HOW THE HIGHEST PERFORMING STATE (MASSACHUSETTS) COMPARES TO THE HIGHEST PERFORMING COUNTRY (HONG KONG) IN GRADE 3 MATHEMATICS STEVEN LEINWAND American Institutes for Research® ALAN GINSBURG U.S. Department of Education APRIL 2009 This paper was supported by funds from the U.S. Department of Education and The Urban Institute. The paper does not necessarily represent the official positions of the U.S. Department of Education or The Urban Institute. The contents are the sole responsibility of the authors. 1000 THOMAS JEFFERSON STREET, NW | WASHINGTON, DC 20007-3835 CONTENTS Executive Summary ........................................................................................................................ 1 Measuring Up: How the Highest Performing State (Massachusetts) Compares to the Highest Performing Country (Hong Kong) in Grade 3 Mathematics ............................................. 5 I. Background and Methodology ................................................................................................ 6 Comparing Hong Kong and Massachusetts Performance ...................................................... 6 Hong Kong and Massachusetts Assessments ......................................................................... 7 Methodology for Comparing Assessments ............................................................................. 9 II. Numbers ..............................................................................................................................
    [Show full text]