Mouse Chmp4b Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Chmp4b Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Chmp4b Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Chmp4b conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Chmp4b gene (NCBI Reference Sequence: NM_029362 ; Ensembl: ENSMUSG00000038467 ) is located on Mouse chromosome 2. 5 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 5 (Transcript: ENSMUST00000044277). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Chmp4b gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-371E3 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene trap insertion die between E7.5 and E8.5. Exon 2 starts from about 28.42% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 32146 bp, and the size of intron 2 for 3'-loxP site insertion: 1514 bp. The size of effective cKO region: ~923 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 5 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Chmp4b Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7178bp) | A(23.77% 1706) | C(21.75% 1561) | T(27.89% 2002) | G(26.6% 1909) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 154686269 154689268 3000 browser details YourSeq 92 1544 1683 3000 86.7% chr3 + 98079140 98079281 142 browser details YourSeq 91 1544 1972 3000 77.8% chr13 - 67082695 67083032 338 browser details YourSeq 86 1553 1680 3000 87.3% chr2 + 93301085 93301215 131 browser details YourSeq 80 1544 1669 3000 87.1% chr15 + 63496254 63496382 129 browser details YourSeq 79 1864 1999 3000 85.8% chrX - 104175247 104175378 132 browser details YourSeq 78 1553 1669 3000 85.6% chr7 + 117477994 117478113 120 browser details YourSeq 76 1538 1964 3000 89.7% chr3 - 51487366 51487912 547 browser details YourSeq 76 1556 1878 3000 92.4% chr2 - 29225289 29225671 383 browser details YourSeq 76 1553 1715 3000 86.7% chr2 + 141534356 141534542 187 browser details YourSeq 75 1540 1657 3000 87.5% chr7 + 129835610 129835726 117 browser details YourSeq 74 1545 1669 3000 81.6% chr17 + 43682707 43682833 127 browser details YourSeq 73 1544 1657 3000 92.1% chr12 - 111581446 111581563 118 browser details YourSeq 71 1544 1640 3000 89.9% chr18 - 73160709 73160807 99 browser details YourSeq 71 1547 1653 3000 84.6% chr19 + 27513961 27514057 97 browser details YourSeq 70 1553 1649 3000 91.8% chr6 + 34502057 34502158 102 browser details YourSeq 68 1544 1638 3000 90.5% chr3 + 87524189 87524284 96 browser details YourSeq 68 1546 1640 3000 90.6% chr10 + 117887382 117887478 97 browser details YourSeq 67 1838 1945 3000 82.1% chr14 - 78310475 78310575 101 browser details YourSeq 67 1544 1669 3000 83.2% chr11 - 105636664 105636790 127 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 154689947 154692946 3000 browser details YourSeq 278 1488 1833 3000 92.5% chr5 - 76903671 76904014 344 browser details YourSeq 270 1478 1799 3000 94.8% chr11 + 96117977 96118333 357 browser details YourSeq 256 1488 1799 3000 95.1% chr7 + 80163259 80163651 393 browser details YourSeq 249 1488 1799 3000 94.7% chr17 - 94753648 94754000 353 browser details YourSeq 248 1488 1799 3000 94.4% chrX + 38567667 38568148 482 browser details YourSeq 248 1491 1799 3000 94.0% chr13 + 100801712 100802035 324 browser details YourSeq 245 1488 1799 3000 95.9% chr6 - 39415279 39415649 371 browser details YourSeq 243 1488 1799 3000 94.3% chrX + 137169466 137170120 655 browser details YourSeq 239 1495 1799 3000 94.8% chr19 - 4639276 4639582 307 browser details YourSeq 239 1489 1799 3000 93.2% chr10 + 76034623 76453744 419122 browser details YourSeq 229 1488 1759 3000 94.6% chr11 + 72642223 72642888 666 browser details YourSeq 228 1496 1763 3000 93.9% chr14 - 47400785 47401065 281 browser details YourSeq 227 1493 1962 3000 91.7% chr2 + 180941017 180941474 458 browser details YourSeq 214 1493 1737 3000 97.8% chr4 - 152155892 152156323 432 browser details YourSeq 210 1489 1784 3000 97.0% chr9 - 109865208 109865513 306 browser details YourSeq 205 1496 1732 3000 97.3% chr5 + 37789676 37789924 249 browser details YourSeq 199 1488 1799 3000 97.2% chr8 - 71501079 71501575 497 browser details YourSeq 199 1496 1735 3000 98.6% chr17 + 27055689 27055975 287 browser details YourSeq 198 1489 1867 3000 91.2% chr4 - 34944825 34945044 220 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Chmp4b charged multivesicular body protein 4B [ Mus musculus (house mouse) ] Gene ID: 75608, updated on 12-Aug-2019 Gene summary Official Symbol Chmp4b provided by MGI Official Full Name charged multivesicular body protein 4B provided by MGI Primary source MGI:MGI:1922858 See related Ensembl:ENSMUSG00000038467 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as C76846; Snf7-2; 2010012F05Rik Expression Ubiquitous expression in placenta adult (RPKM 92.6), bladder adult (RPKM 83.6) and 28 other tissues See more Orthologs human all Genomic context Location: 2; 2 H1 See Chmp4b in Genome Data Viewer Exon count: 5 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 2 NC_000068.7 (154657026..154694783) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 2 NC_000068.6 (154482762..154520519) Chromosome 2 - NC_000068.7 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 3 transcripts Gene: Chmp4b ENSMUSG00000038467 Description charged multivesicular body protein 4B [Source:MGI Symbol;Acc:MGI:1922858] Gene Synonyms 2010012F05Rik, Snf7-2, chromatin modifying protein 4B Location Chromosome 2: 154,651,705-154,694,785 forward strand. GRCm38:CM000995.2 About this gene This gene has 3 transcripts (splice variants), 290 orthologues, 3 paralogues, is a member of 1 Ensembl protein family and is associated with 1 phenotype. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Chmp4b-201 ENSMUST00000044277.9 1616 224aa ENSMUSP00000036206.9 Protein coding CCDS16938 Q9D8B3 TSL:1 GENCODE basic APPRIS P1 Chmp4b-202 ENSMUST00000136788.1 720 No protein - Retained intron - - TSL:2 Chmp4b-203 ENSMUST00000151668.7 1528 No protein - lncRNA - - TSL:1 63.08 kb Forward strand 154.65Mb 154.66Mb 154.67Mb 154.68Mb 154.69Mb 154.70Mb Genes (Comprehensive set... Zfp341-201 >protein coding Chmp4b-203 >lncRNA Zfp341-203 >nonsense mediated decay Chmp4b-201 >protein coding Zfp341-202 >protein coding Chmp4b-202 >retained intron Rpl5-ps2-201 >processed pseudogene Contigs AL929557.15 > Regulatory Build 154.65Mb 154.66Mb 154.67Mb 154.68Mb 154.69Mb 154.70Mb Reverse strand 63.08 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000044277 37.77 kb Forward strand Chmp4b-201 >protein coding ENSMUSP00000036... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Pfam Snf7 family PANTHER PTHR22761 PTHR22761:SF4 Gene3D 1.10.287.1060 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 20 40 60 80 100 120 140 160 180 200 224 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • Proteome Analysis of the HIV-1 Gag Interactome
    Virology 460-461 (2014) 194–206 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Proteome analysis of the HIV-1 Gag interactome Christine E. Engeland a, Nigel P. Brown b, Kathleen Börner a,b, Michael Schümann c, Eberhard Krause c, Lars Kaderali d, Gerd A. Müller e, Hans-Georg Kräusslich a,n a Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany b Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany c Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, D-13125 Berlin, Germany d Institute for Medical Informatics and Biometry (IMB), Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, D-01307 Dresden, Germany e Molecular Oncology, Medical School, University of Leipzig, Semmelweisstraße 14, D-04103 Leipzig, Germany article info abstract Article history: Human immunodeficiency virus Gag drives assembly of virions in infected cells and interacts with host Received 20 January 2014 factors which facilitate or restrict viral replication. Although several Gag-binding proteins have been Returned to author for revisions characterized, understanding of virus–host interactions remains incomplete. In a series of six affinity 6 February 2014 purification screens, we have identified protein candidates for interaction with HIV-1 Gag. Proteins Accepted 19 April 2014 previously found in virions or identified in siRNA screens for host factors influencing HIV-1 replication Available online 10 June 2014 were recovered. Helicases, translation factors, cytoskeletal and motor proteins, factors involved in RNA Keywords: degradation and RNA interference were enriched in the interaction data. Cellular networks of HIV Gag cytoskeleton, SR proteins and tRNA synthetases were identified.
    [Show full text]
  • Supporting Information
    Supporting Information Whittle et al. 10.1073/pnas.0812894106 SI Text range based on analysis on 1.5% agarose gels after reversal of In Vitro Genomic Selection. Recombinant NFI-1-GST fusion pro- cross-linking. DNA-protein complexes were precipitated with tein was immobilized on Glutathione Sepharose 4B (Amersham) anti-NFI immune serum (5 ␮l) or preimmune serum (5 ␮l) as a and C. elegans genomic DNA was used for in vitro genomic control and 5% of the input sample was set aside. Samples were selection. The fusion protein contained the NFI-1 DNA-binding processed using the ChIP assay kit (Upstate). Following reversal domain and a short downstream region. For NFI-1-GST Sepha- of the cross-links, RNase A and Proteinase K treatments, the rose preparation, 400 ml of induced DH5␣ cells expressing immunoprecipitated DNA was purified using phenol-chloro- NFI-1-GST (plasmid pGEXNFI-1) was extracted in buffer L (25 form, precipitated with ethanol, and dissolved in 50 ␮l of DNase, mM Hepes pH 7.5, 10% sucrose, 0.35 M NaCl, 5 mM DTT, 1 mM Rnase-free water. For ChIP-chip, samples were amplified by PMSF, 0.1% Nonidet P-40 and 2 mg/ml of lysozyme). The extract either ligation mediated PCR (5) or a modified Whole Genome (35 ml) was flash-frozen in 5-ml aliquots and stored at –70 °C. To Amplification protocol [Sigma; (6)] as previously described. immobilize NFI-1-GST protein on Glutathione Sepharose 4B, 5 ml of cell extract was incubated with 65 ␮l (bed volume) of Microarrays and Data Extraction.
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • A Genome-Scale CRISPR/Cas9 Knockout Screening Reveals
    www.nature.com/scientificreports OPEN A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine Mohammad Masoudi 1,2,3,4, Motoaki Seki3, Razieh Yazdanparast4*, Nozomu Yachie3 & Hiroyuki Aburatani 1,2* Gemcitabine, 2′,2′-difuoro-2′-deoxycytidine, is used as a pro-drug in treatment of variety of solid tumour cancers including pancreatic cancer. After intake, gemcitabine is transferred to the cells by the membrane nucleoside transporter proteins. Once inside the cells, it is converted to gemcitabine triphosphate followed by incorporation into DNA chains where it causes inhibition of DNA replication and thereby cell cycle arrest and apoptosis. Currently gemcitabine is the standard drug for treatment of pancreatic cancer and despite its widespread use its efect is moderate. In this study, we performed a genome-scale CRISPR/Cas9 knockout screening on pancreatic cancer cell line Panc1 to explore the genes that are important for gemcitabine efcacy. We found SH3D21 as a novel gemcitabine sensitizer implying it may act as a therapeutic target for improvement of gemcitabine efcacy in treatment of pancreatic cancer. Gemcitabine, 2′,2′-difuoro-2′-deoxycytidine (dFdC), is an analogue of deoxycytidine with two fuorine atoms, which is widely used in chemotherapy of solid tumour cancers including pancreas, bladder and breast cancers1. Gemcitabine is administered as a pro-drug and the only reported mechanism for its cellular uptake is transpor- tation by human nucleoside transporter proteins SLC28A1, SLC28A3, SLC29A1 and SLC29A21. Once inside the cell, gemcitabine is phosphorylated to gemcitabine mono-, di- and tri-phosphate by deoxycytidine kinase, cytidine/uridine monophosphate kinase 1 and nucleoside diphosphate kinase, respectively.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • REPORT CHMP4B, a Novel Gene for Autosomal Dominant Cataracts Linked to Chromosome 20Q
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT CHMP4B, a Novel Gene for Autosomal Dominant Cataracts Linked to Chromosome 20q Alan Shiels, Thomas M. Bennett, Harry L. S. Knopf, Koki Yamada, Koh-ichiro Yoshiura, Norio Niikawa, Soomin Shim, and Phyllis I. Hanson Cataracts are a clinically diverse and genetically heterogeneous disorder of the crystalline lens and a leading cause of visual impairment. Here we report linkage of autosomal dominant “progressive childhood posterior subcapsular” cataracts segregating in a white family to short tandem repeat (STR) markers D20S847 (LOD score [Z] 5.50 at recombination fraction [v] 0.0) and D20S195 (Z p 3.65 atv p 0.0 ) on 20q, and identify a refined disease interval (rs2057262–(3.8 Mb)–rs1291139) by use of single-nucleotide polymorphism (SNP) markers. Mutation profiling of positional-candidate genes detected a heterozygous transversion (c.386ArT) in exon 3 of the gene for chromatin modifying protein-4B (CHMP4B)thatwas predicted to result in the nonconservative substitution of a valine residue for a phylogenetically conserved aspartic acid residue at codon 129 (p.D129V). In addition, we have detected a heterozygous transition (c.481GrA) in exon 3 of CHMP4B cosegregating with autosomal dominant posterior polar cataracts in a Japanese family that was predicted to result in the missense substitution of lysine for a conserved glutamic acid residue at codon 161 (p.E161K). Transfection studies of cultured cells revealed that a truncated form of recombinant D129V-CHMP4B had a different subcellular distribution than wild type and an increased capacity to inhibit release of virus-like particles from the cell surface, consistent with deleterious gain-of-function effects.
    [Show full text]
  • Prospective Lncrna-Mirna-Mrna Regulatory
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 40: 1895-1906, 2017 Prospective lncRNA-miRNA-mRNA regulatory network of long non-coding RNA LINC00968 in non-small cell lung cancer A549 cells: A miRNA microarray and bioinformatics investigation DONG-YAO LI1*, WEN-JIE CHEN1*, LEI LUO1, YONG-KUN WANG1, JUN SHANG1, YU ZHANG2, GANG CHEN2 and SHI-KANG LI1 Departments of 1Thoracic and Cardiovascular Surgery and 2Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China Received December 12, 2016; Accepted October 5, 2017 DOI: 10.3892/ijmm.2017.3187 Abstract. Accumulating evidence suggests that the dysregula- adhesion. An lncRNA-miRNA-mRNA regulatory network and tion of long non-coding RNAs (lncRNAs) serves vital roles a protein-protein interaction network were then constructed. in the incidence and progression of lung cancer. However, the Eventually, a prospective lncRNA-miRNA-mRNA regulatory molecular mechanisms of LINC00968, a recently identified network of LINC00968, three miRNAs (miR-9, miR-22 and lncRNA, remain unknown. The objective of present study was miR-4536) and two genes (polo-like kinase 1 and exportin-1) to investigate the role of a prospective lncRNA-miRNA-mRNA was obtained following validation in the Cancer Genome Atlas network regulated by LINC00968 in non-small cell lung database. These results may provide novel insights to support cancer cells. Following the transfection of lentiviruses carrying future research into lncRNA in lung cancer. LINC00968 into A549 cells, the microRNA (miRNA) expres- sion profile of the cells in response to the overexpression of Introduction LINC00968 was detected using an miRNA microarray. Five differentially expressed miRNAs (DEMs) with LINC00968 Lung cancer results in the death of ~1.59 million indi- overexpression were obtained, including miR-9-3p, miR-22-5p, viduals worldwide each year, and is a leading cause of cancer miR-668-3p, miR-3675-3p and miR-4536-3p.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Differential Interactome Proposes Subtype-Specific Biomarkers And
    Journal of Personalized Medicine Article Differential Interactome Proposes Subtype-Specific Biomarkers and Potential Therapeutics in Renal Cell Carcinomas Aysegul Caliskan 1,2,† , Gizem Gulfidan 1,† , Raghu Sinha 3,* and Kazim Yalcin Arga 1,* 1 Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; [email protected] (A.C.); gizemgulfi[email protected] (G.G.) 2 Faculty of Pharmacy, Istinye University, Istanbul 34010, Turkey 3 Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA * Correspondence: [email protected] (R.S.); [email protected] (K.Y.A.) † These authors contributed equally to this work. Abstract: Although many studies have been conducted on single gene therapies in cancer patients, the reality is that tumor arises from different coordinating protein groups. Unveiling perturbations in protein interactome related to the tumor formation may contribute to the development of effective di- agnosis, treatment strategies, and prognosis. In this study, considering the clinical and transcriptome data of three Renal Cell Carcinoma (RCC) subtypes (ccRCC, pRCC, and chRCC) retrieved from The Cancer Genome Atlas (TCGA) and the human protein interactome, the differential protein–protein interactions were identified in each RCC subtype. The approach enabled the identification of dif- ferentially interacting proteins (DIPs) indicating prominent changes in their interaction patterns during tumor formation. Further, diagnostic and prognostic performances were generated by taking into account DIP clusters which are specific to the relevant subtypes. Furthermore, considering the mesenchymal epithelial transition (MET) receptor tyrosine kinase (PDB ID: 3DKF) as a potential Citation: Caliskan, A.; Gulfidan, G.; drug target specific to pRCC, twenty-one lead compounds were identified through virtual screening Sinha, R.; Arga, K.Y.
    [Show full text]