Reconstructing Holocene Climate Change in The
Total Page:16
File Type:pdf, Size:1020Kb
Reconstructing Holocene climate change in the southern hemisphere from a Chilean Lake Transect (CHILT) Margo Eekhaut Ghent University Supervisor: Dr. Elie Verleyen Faculty of Sciences Co-supervisor: Prof. Dr. Wim Vyverman Department of Biology Tutor: Evelien Van de Vyver Thesis submitted to obtain the degree of Research group: Aquatic ecology and Master in Biology Protistology © May 2010 Faculty of Sciences – Aquatic ecology and Protistology; All rights reserved. This thesis contains confidential information and confidential research results that are property to the UGent. The contents of this master thesis may under no circumstances be made public, nor complete or partial, without the explicit and preceding permission of the UGent representative, i.e. the supervisor. The thesis may under no circumstances be copied or duplicated in any form, unless permission granted in written form. Any violation of the confidential nature of this thesis may impose irreparable damage to the UGent. In case of a dispute that may arise within the context of this declaration, the Judicial Court of Gent only is competent to be notified. 2 Content 1 Introduction ..................................................................................................................................... 5 1.1 Present day climate of South America and Chile .................................................................... 9 1.1.1 Wind patterns and present day climate .......................................................................... 9 1.1.2 El Niño Southern Oscillation (ENSO).............................................................................. 11 1.2 Multi-proxy reconstruction ................................................................................................... 13 2 Aims ............................................................................................................................................... 15 3 Material and methods ................................................................................................................... 16 3.1 Research area ........................................................................................................................ 16 3.2 Sediment core collection, transportation and storage ......................................................... 20 3.3 Core subsampling .................................................................................................................. 20 3.4 Lithology and sedimentary structure .................................................................................... 21 3.5 Physical core properties ........................................................................................................ 21 3.6 Sedimentological analysis...................................................................................................... 22 3.7 Biological and biogeochemical proxies ................................................................................. 23 3.7.1 Fossil pigments .............................................................................................................. 23 3.7.2 Diatom composition ...................................................................................................... 24 3.8 Core dating ............................................................................................................................ 26 3.9 Statistical analysis .................................................................................................................. 26 3.9.1 Cluster analysis .............................................................................................................. 26 3.9.2 Ordination analysis ........................................................................................................ 27 4 Results ........................................................................................................................................... 28 4.1 Laguna Parrillar ...................................................................................................................... 28 4.1.1 Magnetic susceptibility .................................................................................................. 28 4.1.2 14C dating ....................................................................................................................... 29 4.1.3 Diatom analysis ............................................................................................................. 29 4.1.4 Pigment analysis ............................................................................................................ 30 3 4.2 Lago Villarrica ........................................................................................................................ 31 4.2.1 Lithology ........................................................................................................................ 31 4.2.2 Magnetic susceptibility and density .............................................................................. 31 4.2.3 Water content and Loss On Ignition (LOI) ..................................................................... 32 4.2.4 Si/Al and Si/Zr measurements ....................................................................................... 34 4.2.5 14C dating ....................................................................................................................... 35 4.2.6 Diatom analysis ............................................................................................................. 37 5 Discussion ...................................................................................................................................... 52 5.1 Laguna Parrillar ...................................................................................................................... 52 5.2 Lago Villarrica ........................................................................................................................ 52 5.2.1 Volcanic activity recorded in Lake Villarrica .................................................................. 52 5.2.2 Paleoclimate reconstruction ......................................................................................... 53 6 Conclusion ..................................................................................................................................... 60 7 Samenvatting ................................................................................................................................. 61 8 Dankwoord .................................................................................................................................... 63 9 References ..................................................................................................................................... 64 10 Appendix ........................................................................................................................................ 77 4 1 Introduction The Earth’s climate undergoes significant changes, which are not yet fully understood. Some of the most spectacular anomalies are apparently out of phase between the northern and southern hemisphere, such as the temperature excursions during the last glacial-interglacial transition (Stocker 2003). There have been a number of studies which showed that the southern high latitudes are important for the regulation of the global climate (e.g. Ribbe 2004) and that they may have triggered some of these major climate changes. The latest models indicate that during the last two deglaciations, the southern oceans initiated abrupt warming in the northern hemisphere (Knorr and Lohmann 2003) possibly through melting of parts of the Antarctic ice sheet (Weaver et al. 2003). There are two hypotheses that explain abrupt climate changes during the last glacial period (Broecker 2003). The first suggests a re-organization of the Atlantic thermohaline circulation, caused by the catastrophic release of glacial meltwater in the North-Atlantic Ocean (Knutti et al. 2004; Steig 2006; Stocker 2002). Swingedouw et al. (2009) demonstrated a direct link between the abrupt changes in the Atlantic meridional overturning circulation (AMOC) and the more gradual changes in the southern ocean. The input of fresh water diluted the salt content of the ocean surface waters and slowed down the formation of deep water; as a result the AMOC weakened. Modeling results showed that a decrease in the strength of the AMOC would result in an instantaneous decrease of northward heat transport. Based on comparisons between data from the northern and southern hemisphere, it has been proposed that cold events in the North correlate with warm events in the South (Andres et al. 2003; Blunier and Brook 2001). This has lead to the development of the bipolar seesaw hypothesis (Barbante et al. 2006; Severinghaus 2009). The second hypothesis proposes that changes in the tropical atmosphere-ocean system are responsible for an instant climate response (Broecker 2003). The evidence for the first hypothesis concerning the thermohaline ocean circulation is compelling and seems to be strong (Broecker 2003). Many paleoclimate studies over the last decade have highlighted the extreme climate fluctuations of the last glacial interval, but little is known about climate variability during the Holocene and the mechanisms behind it. Although the Holocene has not experienced climate changes of the same magnitude as during the major Quaternary glaciations (last 1.7