Luminescence of Higher Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

Luminescence of Higher Mushrooms Journal of Siberian Federal University. Biology 4 (2012 5) 331-351 ~ ~ ~ УДК 577.332.23: 539.199 Luminescence of Higher Mushrooms Vladimir S. Bondara,b*, УДК 577.332.23: 539.199 Osamu Shimomuraa,c and Josef I. Gitelsona,b a Luminescence of Higher Mushrooms Siberian Federal University, 79 Svobodny, Krasnoyarsk, 660041 Russia b Institute of Biophysics SB RAS, Vladimir S. Bondara,b,*, Osamu Shimomuraa,c and Josef I. Gitelson50/50a,b Akademgorodok, Krasnoyarsk, 660036 Russia c a Marine Biological Laboratory, Woods Hole, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Massachusetts, 02543 United States of America 1 Svobodny, Krasnoyarsk, 660041 Russia bInstitute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk,Received 66003613.12.2012, Russia received in revised form 20.12.2012, accepted 27.12.2012 c Marine Biological Laboratory, Woods Hole, Massachusetts,The review 02543 highlights United theStates results of Americaof experimental studies on fungal luminescence carried out during last two centuries. Present concepts on the luminescent system and light emission mechanism in higher fungi are discussed. *Corresponding author E-mail address: [email protected] Keywords: higher mushrooms, bioluminescence, chemiluminescence, luciferase, luciferin, emitter. Unique position the kingdom of mushrooms holds in the living nature was sagaciously foretold by French botanist and mycologist Sebastien Vaillant whose words are given in the epigraph of this paper. Fabulous foresight at the turn of the XVIIth and XVIIIth centuries when nothing was known about biochemistry, not to mention genetics. Yet, further development of biology proves equidistance of the kingdom of mushrooms from both animals and plants. But traditions die hard and up to now mycology is «Fungi – are the devil product that disturbs the general harmony «Fungiof nature, – are theto confusedevil product the that most studied in universities in the course of general disturbs the general harmony of nature, botany. talented researchers and get of young botanists in despair» (Vaillant Sébastien, 1669-1722). to confuse the most talented researchers The mechanism of bioluminescence in and get of young botanists in despair» fungi, the knowledge of which is reviewed in this The review highlights the results of experimental studies on fungal luminescence(Vaillant Sébastien, carried 1669-1722).out work, also proves their unique position. Fungi during last two centuries. Present concepts on the luminescent system and light emission * Corresponding author E-mail address: [email protected] mechanism in higher fungi are discussed. 1 © Siberian Federal University. All rights reserved Keywords: higher mushrooms, bioluminescence, chemiluminescence, luciferase, luciferin, – 331 – emitter. Unique position the kingdom of mushrooms holds in the living nature was sagaciously foretold by French botanist and mycologist Sebastien Vaillant whose words are given in the epigraph of this paper. Fabulous foresight at the turn of the XVIIth and XVIIIth centuries when nothing was known about biochemistry, not to mention genetics. Yet, further development of biology proves equidistance of the kingdom of mushrooms from both animals and plants. But 1 Figures: Vladimir S. Bondar, Osamu Shimomura… Luminescence of Higher Mushrooms Fig. 1. Emission of visible light by mushrooms: А – Mycena lampadis; B – Filoboletus sp.; C – Mycena sp.; D, E, F – Panellus stipticus; G, H – Omphalotus sp.; I – Fig.Neonothopanus 1. nambi. Photographs (A – H) – from official sites of National Geographic (http://news.nationalgeographic.com/news/) and Flikr® from Yahoo (http://www. flickr.com /); photo (I) was kindly provided by Vietnamese researcher Dao Thi Van (Bio-Lumi Co., Ltd., Ho Chi Minh City, Vietnam) 3 share bioluminescence capability with animals Elder noted that luminescent white mushrooms and bacteria, however, 2the deeper the insight into with sweetish taste and exhibiting pharmacological the mechanism of this amazing phenomenon the effect can be found on rotting trees. G.E. Rumph more obvious is its fundamental distinction in wrote in «Herbarium Amboiense», that residents mushrooms from the 1luminescence mechanism of Moluccas (Indonesia) illuminated their way in of animals and plants.light (arb. emission un.) a dark forest by fruiting bodies of bioluminescent Bioluminescence of fungi, emission of light mushrooms (quote from Harvey, 1957). Harvey visible with unaided eye0 (Fig. 1), has been known (1957) noted that on the one hand the aboriginals 400 500 600 700 down the ages. Several authors (Johnson, Haneda of Micronesia used luminescent mushrooms wavelength (nm) 1966; Shimomura, 2006) note, that according to as decorations for ritual dances to paint their Harvey, this phenomenon was described as early faces to intimidate enemies, on the other hand Fig. 2. as by Aristotle (fourth century BC) and Pliny the luminous mushrooms were frequently destroyed Elder (first century AC) in «Historia Naturalis» because to find them was considered an ill omen. (Harvey, 1952, 1957). Describing luminescence Emotions of people who saw for the first time the of rotting tree Aristotle called this phenomenon mushrooms glow is anyone’s guess. Surviving «shining wood» and «fox fire», while Pliny the20 rave records of seafarers of Ancient times speak – 332 – Vladimir S. Bondar, Osamu Shimomura… Luminescence of Higher Mushrooms of the mind-bending effect of luminescence of heat – light goes down in vacuum, in hydrogen marine organisms. The emotional impact of and in carbon dioxide; 2 – luminescence does luminescence of mushrooms was probably not not depend on humidity, temperature, or external less (Fig. 1). light, and does not become brighter in pure oxygen Aristotle’s and Pliny the Elder’s works and (quote from Harvey, 1957). J. Schmitz made a reports of botanists about wide occurrence of detailed description of rhizomorphs; F. Ludwig luminescent mushrooms notwithstanding, for presented his dissertation on the luminescence of a long time researchers focused their efforts mushrooms and wood; H. Molisсh published in on luminescence of rotting trees, but not the 1904 a monograph on luminous plants (quote by mushrooms, as they are. For instance, well Yachevsky, 1933). known is the work by Robert Boyle (1668), who It should be mentioned that in the two recent used an air pump to demonstrate necessity of air centuries a considerable number of the species of for wood to glow. Therefore, the most important luminous mushroom were found; most of them discoveries pertaining directly to bioluminescence belong to basidiomycetes class (Shimomura, of mushrooms were made by researchers much 2006). By now luminous mushrooms have been later – the first half of the XIXth century. Scientific found in North and South America, Europe, Asia, works of this period give some insight into the Australia, and Africa. The list keeps steadily way in which the views of researchers studying growing because more and more new species are luminescence of wood and trying to understand found, specifically in the subtropical and tropical the cause of this phenomenon transformed. J.F. zones of the globe where natural conditions are Heller, Professor of the University of Vienna, was most favorable for their habitation. While in the among the first who associated luminescence of first half of the XXth century A.A. Yachevsky rotting wood with presence of mushrooms; (1933) reported only 28 species of luminous thorough examinations by von Derschau et al. mushrooms, by the end of the century their made possible to conclude that luminescence number had grown to 40 species (Wassink, 1978; of wood is associated with presence of fungal Herring, 1994). Modern methods of identifying mycelium (von Derschau’s letter was published biological objects allowed Desjardin et al. (2008) in 1823 by the German botanist T.F.L. Nees to attribute about 70 species of basidiomycetes to von Esenbeck); Conrade Gesner, Francis Bacon luminous mushrooms. Further studies of fungal and Thomas Bartholin left their records about bioluminescence made possible to put in the list glowing soil (quote by Harvey, 1952, 1957). already 80 species of luminous mushrooms, not Luminescence of mushrooms was observed in including synonyms (Vydryakova et al., 2009). 1815 by P. Heinrich; J.F. Heller noted in 1853 that Recently seven more new species of luminous luminescence is a biological process (quote by mushrooms were found; the authors attributed Yachevsky, 1933). them to Mycena family (Desjardin et al., 2010). The pioneer works of the first half of the Even though mushroom bioluminescence XIXth century mentioned above opened the way has been studied out for many years, research and largely facilitated further studies of fungal is focused on three main directions. They are: luminescence. In 1855 J.H. Fabre experimentally to develop methods of cultivating luminous established basic parameters of mushroom mushrooms under laboratory conditions (Endo bioluminescence and formulated two important et al., 1970; Bermudes et al., 1990; Weitz et al., conclusions: 1 – luminescence is not attended by 2001; Mendes et al., 2008; Dao, 2009), to study – 333 – Figures: Fig. 1. Vladimir S. Bondar, Osamu Shimomura… Luminescence of Higher Mushrooms 3 2 1 light (arb. emission un.) 0 400 500 600 700 wavelength (nm) Fig. 2. Bioluminescence spectrum of N. nambi myceliumFig. in2. vivo (Bondar et al., 2011) molecular organization of the luminescent and before that period, it practically does not system and the mechanisms
Recommended publications
  • Biological Diversity
    From the Editors’ Desk….. Biodiversity, which is defined as the variety and variability among living organisms and the ecological complexes in which they occur, is measured at three levels – the gene, the species, and the ecosystem. Forest is a key element of our terrestrial ecological systems. They comprise tree- dominated vegetative associations with an innate complexity, inherent diversity, and serve as a renewable resource base as well as habitat for a myriad of life forms. Forests render numerous goods and services, and maintain life-support systems so essential for life on earth. India in its geographical area includes 1.8% of forest area according to the Forest Survey of India (2000). The forests cover an actual area of 63.73 million ha (19.39%) and consist of 37.74 million ha of dense forests, 25.51 million ha of open forest and 0.487 million ha of mangroves, apart from 5.19 million ha of scrub and comprises 16 major forest groups (MoEF, 2002). India has a rich and varied heritage of biodiversity covering ten biogeographical zones, the trans-Himalayan, the Himalayan, the Indian desert, the semi-arid zone(s), the Western Ghats, the Deccan Peninsula, the Gangetic Plain, North-East India, and the islands and coasts (Rodgers; Panwar and Mathur, 2000). India is rich at all levels of biodiversity and is one of the 12 megadiversity countries in the world. India’s wide range of climatic and topographical features has resulted in a high level of ecosystem diversity encompassing forests, wetlands, grasslands, deserts, coastal and marine ecosystems, each with a unique assemblage of species (MoEF, 2002).
    [Show full text]
  • Kotlobay Et Al. 10.1073/Pnas.1803615115
    Supplementary materials for Kotlobay et al. 10.1073/pnas.1803615115 Supplementary Methods Molecular biology Identification of the nnluz gene. To achieve strong constitutive expression of cDNA library from Neonothopanus nambi, we constructed the GAP-pPic9K vector. The plasmid was created based on pPic9K vector (Invitrogen) by replacing inducible alcohol oxidase promoter AOX1 and alpha-factor signal sequences with the glyceraldehydes-3-phosphate dehydrogenase (GAP) promoter from Pichia pastoris. GAP promoter sequence was obtained from the vector pGAPZA by digestion with BglII, completion of overhanging nucleotides with Klenow fragment and subsequent digestion with EcoRI. pPic9K vector was digested with AatII, blunted with Klenow fragment, subsequently digested with EcoRI and used as a backbone for cloning of GAP promoter fragment. Unique restriction sites BamHI, Eco53kI, SacI were further introduced by PCR with primers 5’-AATTGGATCCCAGAGGCTCGC-3’ and 5’-GGCCGCGAGCTCTGGGATCC-3’ and cloning with EcoRI/NotI sites. Total RNA from N.nambi mycelium was prepared according to the protocol from Chomczynski and Sacchi (1987) [ref. (1)] and the cDNA library was constructed with SMART PCR cDNA Synthesis Kit (Clontech). Amplified cDNA was cloned into the GAP-pPic9K vector using BamHI/NotI restriction sites. pPic9K vector spontaneously generate multiple insertion events after linearization, as linear DNA can generate stable transformants of Pichia pastoris via homologous recombination between the transforming DNA and regions of homology within the genome (2–4). Multiple insertion events occur spontaneously 10-100 times less often than single insertion events (GAP-pPic9K vector manual, ThermoFisher). Extracted cDNA plasmid library was linearized by AvrII restriction site and used for transformation of Pichia pastoris GS115 strain by electroporation.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Panellus Stipticus
    VOLUME 55: 5 SEPTEMBER-OCTOBER 2015 www.namyco.org Regional Trustee Nominations Every year, on a rotating basis, four Regional Trustee positions are due for nomination and election by NAMA members in their respective region. The following regions have openings for three-year terms to begin in 2016: Appalachian, Boreal, Great Lakes, and Rocky Mountain. The affiliated clubs for each region are listed below; those without a club affiliation are members of the region where they live. Members of each region may nominate them- selves or another person in that region. Nominations close on October 31, 2015. Appalachian Cumberland Mycological Society Mushroom Club of Georgia North Alabama Mushroom Society South Carolina Upstate Mycological Society West Virginia Mushroom Club Western Pennsylvania Mushroom Club Boreal Alberta Mycological Society Foray Newfoundland & Labrador Great Lakes Hoosier Mushroom Society Illinois Mycological Association Michigan Mushroom Hunters Club Minnesota Mycological Society Mycological Society of Toronto Four Corners Mushroom Club Ohio Mushroom Society Mushroom Society of Utah Wisconsin Mycological Society New Mexico Mycological Society Rocky Mountains North Idaho Mycological Association Arizona Mushroom Club Pikes Peak Mycological Society Colorado Mycological Society Southern Idaho Mycological Association SW Montana Mycological Association Please send the information outlined on the form below to Adele Mehta by email: [email protected], or by mail: 4917 W. Old Shakopee Road, Bloomington, MN 55437. Regional
    [Show full text]
  • William Mcelroy
    NATIONAL ACADEMY OF SCIENCES WILLIAM DAVID MC ELROY 1917–1999 A Biographical Memoir by J. WOODLAND HASTINGS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 85 PUBLISHED 2004 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. Photo by Anthony di Gesu, La Jolla, California WILLIAM DAVID MC ELROY January 22, 1917–February 17, 1999 BY J. WOODLAND HASTINGS ILLIAM DAVID MCELROY, a biologist who made ground- Wbreaking discoveries in bioluminescence and was an administrator of great talent, died of respiratory failure at Scripps Memorial Hospital in San Diego, California, at the age of 82. He was an innovative and internationally promi- nent scientist and administrator, with a continuing agenda for experimental projects and research support for all areas of science, both basic and applied. At the time of his death McElroy was a professor emeritus at the University of California, San Diego, having served as its chancellor from 1972 to 1980. He was on the faculty at the Johns Hopkins University, where from 1946 until 1969 he was the founding director of the McCollum-Pratt Institute, and from 1956 to 1969 the chairman of the biology depart- ment. He was a member of many professional scientific societies and served as president of several, including three of the largest: the American Society of Biological Chemists, the American Institute of Biological Sciences, and the 116,000- member American Association for the Advancement of Science. He served on the President’s Science Advisory Committee under both Kennedy and Johnson (1962-1966), was elected to the National Academy of Sciences in 1963, was director of the National Science Foundation under Nixon 3 4 BIOGRAPHICAL MEMOIRS (1969-1972), and was a member of the President’s Committee on the National Medal of Science Award (1972).
    [Show full text]
  • Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
    www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2.
    [Show full text]
  • Understanding Bioluminescence in Dinoflagellates—How Far Have We Come?
    Microorganisms 2013, 1, 3-25; doi:10.3390/microorganisms1010003 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Understanding Bioluminescence in Dinoflagellates—How Far Have We Come? Martha Valiadi 1,* and Debora Iglesias-Rodriguez 2 1 Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse, Plӧn 24306, Germany 2 Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +49-4522-763277; Fax: +49-4522-763310. Received: 3 May 2013; in revised form: 20 August 2013 / Accepted: 24 August 2013 / Published: 5 September 2013 Abstract: Some dinoflagellates possess the remarkable genetic, biochemical, and cellular machinery to produce bioluminescence. Bioluminescent species appear to be ubiquitous in surface waters globally and include numerous cosmopolitan and harmful taxa. Nevertheless, bioluminescence remains an enigmatic topic in biology, particularly with regard to the organisms’ lifestyle. In this paper, we review the literature on the cellular mechanisms, molecular evolution, diversity, and ecology of bioluminescence in dinoflagellates, highlighting significant discoveries of the last quarter of a century. We identify significant gaps in our knowledge and conflicting information and propose some important research questions
    [Show full text]
  • Names, Names, Names: When Nomenclature Meets Molecules Ron Petersen and Karen Hughes*
    22 McIlvainea Volume 18, Number 1, 2009 23 Names, Names, Names: When Nomenclature Meets Molecules Ron Petersen and Karen Hughes* IN EASTERN North America, the Appalachian in point: for years it was assumed that Amanita cae- Mountains have their southern origin in northern sarea (Caesar’s mushroom; Fig. 1A) occurred in the Georgia, and extend to the northeast to Maine, a Smokies. Confronted with our mushroom in 1968, distance of over 3200 kilometers. Although not Marinus Donk and Roger Heim, with deep expe- as spectacular as other ranges (i.e. Alps, Himalaya, rience in Old World tropics (Indonesia and New Andes, Rockies, etc.), their height (up to 2250 m) Caledonia), told us that our species was, in fact, A. combined with their longitudinal range provide a hemibapha (Fig. 2A), with which they were familiar. host of ecological niches. Glaciation of the north- Creating further confusion: Vassilieva described A. ern portion of the range 10- to 20,000 years ago caesarioides (Fig. 2B) from far eastern Russia. Finally, produced climatic conditions which forced the we have come to call our version of Caesar’s mush- forest flora to colonize farther south into more room A. jacksonii (Fig. 1B). hospitable climatic refugia, taking its fungi with it But if such confusion is possible over such a and eventually to recolonize northward once the sensational mushroom, what other surprises could glaciers receded. The conifers of the Canadian lurk over other, more arcane worldwide mimics? Shield still can be found at high elevation as far While herbarium specimens can be (and have south as Tennessee (N 37o).
    [Show full text]
  • Announcement Nampijja 4.5.21
    Plant Pathology Seminar Series Bioluminescent fungi, a source of genes to monitor plant stresses and changes in the environment Marilen Nampijja, PhD student Bioluminescence is a natural phenomenon of light emission by a living organism resulting from oxidation of luciferin catalyzed by the enzyme luciferase (Dubois 1887). This process serves as a powerful biological tool for scientists to study gene expression in plants and animals. A wide diversity of living organisms is bioluminescent, including some fungi (Shimomura 2006). For many of these organisms, the ability to emit light is a defining feature of their biology (Labella et al. 2017; Verdes and Gruber 2017; Wainwright and https://www.sentinelassam.com Longo 2017). For example, bioluminescence in many organisms serves purposes such as attracting mates and pollinators, scaring predators, and recruiting other creatures to spread spores (Kotlobay et al. 2018; Shimomura 2006; Verdes and Gruber 2017). Oliveira and Stevani (2009) confirmed that the fungal bioluminescent reaction involved reduction of luciferin by NADPH and a luciferase. Their findings supported earlier studies by Airth and McElroy (1959) who found that the addition of reduced pyridine nucleotide and NADPH resulted in sustained light emission using the standard luciferin-luciferase test developed by Dubois (1887). Additionally, Kamzolkina et al. (1984;1983) and Kuwabara and Wassink (1966) purified and crystallized luciferin from the fungus Omphalia flavida, which was active in bioluminescence when exposed to the enzyme prepared according to the procedure described by Airth and McElroy (1959). Decades after, Kotlobay et al. (2018) showed that the fungal luciferase is encoded by the luz gene and three other key enzymes that form a complete biosynthetic cycle of the fungal luciferin from caffeic acid.
    [Show full text]
  • Evolution of Complex Fruiting-Body Morphologies in Homobasidiomycetes
    Received 18April 2002 Accepted 26 June 2002 Publishedonline 12September 2002 Evolutionof complexfruiting-bo dymorpholog ies inhomobasidi omycetes David S.Hibbett * and Manfred Binder BiologyDepartment, Clark University, 950Main Street,Worcester, MA 01610,USA The fruiting bodiesof homobasidiomycetes include some of the most complex formsthat have evolved in thefungi, such as gilled mushrooms,bracket fungi andpuffballs (‘pileate-erect’) forms.Homobasidio- mycetesalso includerelatively simple crust-like‘ resupinate’forms, however, which accountfor ca. 13– 15% ofthedescribed species in thegroup. Resupinatehomobasidiomycetes have beeninterpreted either asa paraphyletic grade ofplesiomorphic formsor apolyphyletic assemblage ofreducedforms. The former view suggeststhat morphological evolutionin homobasidiomyceteshas beenmarked byindependentelab- oration in many clades,whereas the latter view suggeststhat parallel simplication has beena common modeof evolution.To infer patternsof morphological evolution in homobasidiomycetes,we constructed phylogenetic treesfrom adatasetof 481 speciesand performed ancestral statereconstruction (ASR) using parsimony andmaximum likelihood (ML)methods. ASR with both parsimony andML implies that the ancestorof the homobasidiomycetes was resupinate, and that therehave beenmultiple gains andlosses ofcomplex formsin thehomobasidiomycetes. We also usedML toaddresswhether there is anasymmetry in therate oftransformations betweensimple andcomplex forms.Models of morphological evolution inferredwith MLindicate that therate
    [Show full text]
  • Revised Taxonomy and Phylogeny of an Avian-Dispersed Neotropical Rhizomorph-Forming Fungus
    Mycological Progress https://doi.org/10.1007/s11557-018-1411-8 ORIGINAL ARTICLE Tying up loose threads: revised taxonomy and phylogeny of an avian-dispersed Neotropical rhizomorph-forming fungus Rachel A. Koch1 & D. Jean Lodge2,3 & Susanne Sourell4 & Karen Nakasone5 & Austin G. McCoy1,6 & M. Catherine Aime1 Received: 4 March 2018 /Revised: 21 May 2018 /Accepted: 24 May 2018 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Abstract Rhizomorpha corynecarpos Kunze was originally described from wet forests in Suriname. This unusual fungus forms white, sterile rhizomorphs bearing abundant club-shaped branches. Its evolutionary origins are unknown because reproductive struc- tures have never been found. Recent collections and observations of R. corynecarpos were made from Belize, Brazil, Ecuador, Guyana, and Peru. Phylogenetic analyses of three nuclear rDNA regions (internal transcribed spacer, large ribosomal subunit, and small ribosomal subunit) were conducted to resolve the phylogenetic relationship of R. corynecarpos. Results show that this fungus is sister to Brunneocorticium bisporum—a widely distributed, tropical crust fungus. These two taxa along with Neocampanella blastanos form a clade within the primarily mushroom-forming Marasmiaceae. Based on phylogenetic evidence and micromorphological similarities, we propose the new combination, Brunneocorticium corynecarpon, to accommodate this species. Brunneocorticium corynecarpon is a pathogen, infecting the crowns of trees and shrubs in the Neotropics; the long, dangling rhizomorphs with lateral prongs probably colonize neighboring trees. Longer-distance dispersal can be accomplished by birds as it is used as construction material in nests of various avian species. Keywords Agaricales . Fungal systematics .
    [Show full text]
  • Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As Alternatives for Biological Control
    Appl Microbiol Biotechnol (2016) 100:3813–3824 DOI 10.1007/s00253-015-7234-5 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 4 January 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In this second section of a two-part mini-re- Introduction view article, we introduce 101 further nematicidal and non-nematicidal secondary metabolites biosynthesized Metabolites from nematophagous basidiomycetes by nematophagous basidiomycetes or non- nematophagous ascomycetes and basidiomycetes. Sev- General remarks eral of these compounds have promising nematicidal activity and deserve further and more detailed analy- The chemical ecology of nematophagous fungi is still far from sis. Thermolides A and B, omphalotins, ophiobolins, understood. Little has been done to screen for metabolites in bursaphelocides A and B, illinitone A, pseudohalonectrins A nematophagous fungi, or nematicidal metabolites in other fun- and B, dichomitin B, and caryopsomycins A–Careex- gi, since the pioneering studies by Stadler and colleagues pub- cellent candidates or lead compounds for the develop- lished in the 1990s (Stadler et al. 1993a, b, 1994a, b, c, d). In ment of biocontrol strategies for phytopathogenic the first part of this review, we discussed 83 primary and nematodes. Paraherquamides, clonostachydiol, and secondary metabolites from nematophagous ascomycetes nafuredins offer promising leads for the development (Degenkolb and Vilcinskas, in press). In this second install- of formulations against the intestinal nematodes of ment, we consider nematicidal metabolites from ruminants.
    [Show full text]