Transparent Dynamic Optimization: the Design and Implementation of Dynamo

Total Page:16

File Type:pdf, Size:1020Kb

Transparent Dynamic Optimization: the Design and Implementation of Dynamo Transparent Dynamic Optimization: The Design and Implementation of Dynamo Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia HP Laboratories Cambridge HPL-1999-78 June, 1999 E-mail: [email protected] dynamic Dynamic optimization refers to the runtime optimization optimization, of a native program binary. This report describes the compiler, design and implementation of Dynamo, a prototype trace selection, dynamic optimizer that is capable of optimizing a native binary translation program binary at runtime. Dynamo is a realistic implementation, not a simulation, that is written entirely in user-level software, and runs on a PA-RISC machine under the HPUX operating system. Dynamo does not depend on any special programming language, compiler, operating system or hardware support. Contrary to intuition, we demonstrate that it is possible to use a piece of software to improve the performance of a native, statically optimized program binary, while it is executing. Dynamo not only speeds up real application programs, its performance improvement is often quite significant. For example, the performance of many +O2 optimized SPECint95 binaries running under Dynamo is comparable to the performance of their +O4 optimized version running without Dynamo. Internal Accession Date Only Ó Copyright Hewlett-Packard Company 1999 Contents 1 INTRODUCTION ........................................................................................... 7 2 RELATED WORK ......................................................................................... 9 3 OVERVIEW ................................................................................................. 11 3.1 Design Goals .................................................................................................................11 3.2 How Dynamo works ......................................................................................................12 3.3 Innovative features.........................................................................................................13 3.4 Bailing out to direct execution........................................................................................14 3.5 System calls...................................................................................................................14 3.6 Self-modifying code.......................................................................................................15 4 MEMORY LAYOUT..................................................................................... 16 4.1 Address space separation ...............................................................................................18 5 CONTROL................................................................................................... 20 5.1 Context switches............................................................................................................21 5.2 Trapping control ............................................................................................................21 5.3 Signal handling..............................................................................................................22 6 INTERPRETER ........................................................................................... 24 6.1 Plug-in interpreter interface............................................................................................24 6.2 Interpretation via just-in-time translation........................................................................25 7 TRACE SELECTOR.................................................................................... 27 7.1 Online profiling .............................................................................................................27 7.2 Speculative trace selection (SPECL) ..............................................................................28 7.2.1 Basic block selection (BLOCK)..............................................................................29 7.2.2 Static trace selection (STATIC)..............................................................................30 7.2.3 Two-level hierarchical selection (2-LEVEL) ..........................................................31 7.3 Trace selection rate ........................................................................................................32 7.4 Bailing out.....................................................................................................................33 7.5 Evaluation .....................................................................................................................34 7.6 Trace quality metric .......................................................................................................36 7.7 Selection threshold.........................................................................................................38 8 FRAGMENT OPTIMIZER............................................................................ 40 8.1 Dynamic optimization opportunities...............................................................................41 8.1.1 Exposed partial redundancies .................................................................................41 8.1.2 Suboptimal register allocation ................................................................................42 8.1.3 Shared library invocation........................................................................................44 8.2 Intermediate form ..........................................................................................................44 8.3 Fragment formation .......................................................................................................45 8.3.1 Direct branch Adjustments .....................................................................................46 2 8.3.2 Indirect branch Adjustments...................................................................................46 8.3.3 Linker Stubs...........................................................................................................46 8.4 Optimization..................................................................................................................47 8.4.1 Optimization levels ................................................................................................47 8.4.2 Speculative optimizations.......................................................................................48 8.4.3 Multi-versioning optimization ................................................................................49 8.4.4 Fragment-link-time optimization ............................................................................49 8.5 Undesirable side-effects of optimization.........................................................................51 8.6 Register allocation .........................................................................................................52 8.7 Experimental evaluation.................................................................................................52 9 FRAGMENT LINKER.................................................................................. 56 9.1 Emitting the fragment code ............................................................................................56 9.2 Pros and cons of branch linking......................................................................................56 9.3 Link records and the fragment lookup table....................................................................57 9.4 Direct branch linking .....................................................................................................58 9.5 Indirect branch linking ...................................................................................................59 9.6 Linker stubs revisited.....................................................................................................59 9.7 Branch unlinking ...........................................................................................................60 9.8 Performance benefit from linking...................................................................................62 10 FRAGMENT CACHE MANAGER ............................................................... 63 10.1 Fragment Cache design ..............................................................................................63 10.2 Working-set based Fragment Cache flushing..............................................................64 10.2.1 The case for Fragment Cache flushing ................................................................65 10.2.2 Selecting a time to flush......................................................................................66 10.2.3 Performance: memory usage...............................................................................68 10.2.4 Performance: speedups .......................................................................................71 10.3 Alternative placement strategy ...................................................................................74 10.3.1 Functionality and behavior .................................................................................75 10.3.2 Performance .......................................................................................................75 11 SIGNAL HANDLER..................................................................................... 78 12 PERFORMANCE SUMMARY ..................................................................... 80 12.1 Experimental
Recommended publications
  • US 2002/0066086 A1 Linden (43) Pub
    US 2002O066086A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0066086 A1 Linden (43) Pub. Date: May 30, 2002 (54) DYNAMIC RECOMPLER (52) U.S. Cl. ............................................ 717/145; 717/151 (76) Inventor: Randal N. Linden, Los Angeles, CA (57) ABSTRACT (US) A method for dynamic recompilation of Source Software Correspondence Address: instructions for execution by a target processor, which LU & LIU LLP considers not only the Specific Source instructions, but also 811 WEST SEVENTH STREET, SUITE 1100 the intent and purpose of the instructions, to translate and LOS ANGELES, CA 90017 (US) optimize a set of equivalent code for the target processor. The dynamic recompiler determines what the Source opera (21) Appl. No.: 09/755,542 tion code is trying to accomplish and the optimum way of Filed: Jan. 5, 2001 doing it at the target processor, in an “interpolative' and (22) context Sensitive fashion. The Source instructions are pro Related U.S. Application Data cessed in blocks of varying Sizes by the dynamic recompiler, which considers the instructions that come before and after (63) Non-provisional of provisional application No. a current instruction to determine the most efficient approach 60/175,008, filed on Jan. 7, 2000. out of Several available approaches for encoding the opera tion code for the target processor to perform the equivalent Publication Classification tasks Specified by the Source instructions. The dynamic compiler comprises a decoding Stage, an optimization Stage (51) Int. Cl. ................................................. G06F 9/45 and an encoding Stage. Patent Application Publication May 30, 2002 Sheet 1 of 3 US 2002/0066086 A1 Patent Application Publication May 30, 2002 Sheet 2 of 3 US 2002/0066086 A1 - \O, 2 Patent Application Publication May 30, 2002 Sheet 3 of 3 US 2002/0066086 A1 fo, 3 US 2002/0066086 A1 May 30, 2002 DYNAMIC RECOMPLER more target instructions to be executed in response to a given Source instruction.
    [Show full text]
  • The LLVM Instruction Set and Compilation Strategy
    The LLVM Instruction Set and Compilation Strategy Chris Lattner Vikram Adve University of Illinois at Urbana-Champaign lattner,vadve ¡ @cs.uiuc.edu Abstract This document introduces the LLVM compiler infrastructure and instruction set, a simple approach that enables sophisticated code transformations at link time, runtime, and in the field. It is a pragmatic approach to compilation, interfering with programmers and tools as little as possible, while still retaining extensive high-level information from source-level compilers for later stages of an application’s lifetime. We describe the LLVM instruction set, the design of the LLVM system, and some of its key components. 1 Introduction Modern programming languages and software practices aim to support more reliable, flexible, and powerful software applications, increase programmer productivity, and provide higher level semantic information to the compiler. Un- fortunately, traditional approaches to compilation either fail to extract sufficient performance from the program (by not using interprocedural analysis or profile information) or interfere with the build process substantially (by requiring build scripts to be modified for either profiling or interprocedural optimization). Furthermore, they do not support optimization either at runtime or after an application has been installed at an end-user’s site, when the most relevant information about actual usage patterns would be available. The LLVM Compilation Strategy is designed to enable effective multi-stage optimization (at compile-time, link-time, runtime, and offline) and more effective profile-driven optimization, and to do so without changes to the traditional build process or programmer intervention. LLVM (Low Level Virtual Machine) is a compilation strategy that uses a low-level virtual instruction set with rich type information as a common code representation for all phases of compilation.
    [Show full text]
  • A Dynamically Recompiling ARM Emulator POWERED
    POWERED TACARM A Dynamically Recompiling ARM Emulator 3rd year project report 2000-2001 University of Warwick Written by David Sharp Supervised by Graham Martin 2 Abstract Dynamically recompiling from one machine code to another can be used to emulate modern microprocessors at realistic speeds. This report is a discussion of the techniques used in implementing a dynamically recompiling emulator of an ARM processor for use in an emulation of a complete computer system. Keywords Emulation, Dynamic Recompilation, Binary Translation, Just-In-Time compilation, Virtual Machine, Microprocessor Simulation, Intermediate Code, ARM. 3 Contents 1. Introduction 7 1.1. What is emulation? 7 1.2. Applications of emulation 7 1.3. Processor emulation techniques 9 1.4. This Project 13 2. Analysis 16 2.1. Introduction to the ARM 16 2.2. Identifying the problem 18 2.3. Getting started 20 2.4. The System Design 21 3. Disassembler 23 3.1. Purpose 23 3.2. ARM decoding 23 3.3. Design 24 4. Interpreter 26 4.1. Purpose 26 4.2. The problem with JIT 26 4.3. The HotSpotTM alternative 26 4.4. Quantifying the JIT problem 27 4.5. Faster decoding 28 4.6. Interfaces 29 4.7. The emulation loop 30 4.8. Implementation 31 4.9. Debugging 32 4.10. Compatibility 33 5. Recompilation 35 5.1. Overview 35 5.2. Methods of generating native code 35 5.3. The use of intermediate code 36 6. Armlets – An Intermediate Code 38 6.1. Purpose 38 6.2. The ‘explicit-implicit problem’ 38 6.3. Options 39 6.4.
    [Show full text]
  • A Brief History of Just-In-Time Compilation
    A Brief History of Just-In-Time JOHN AYCOCK University of Calgary Software systems have been using “just-in-time” compilation (JIT) techniques since the 1960s. Broadly, JIT compilation includes any translation performed dynamically, after a program has started execution. We examine the motivation behind JIT compilation and constraints imposed on JIT compilation systems, and present a classification scheme for such systems. This classification emerges as we survey forty years of JIT work, from 1960–2000. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; K.2 [History of Computing]: Software General Terms: Languages, Performance Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation 1. INTRODUCTION into a form that is executable on a target platform. Those who cannot remember the past are con- What is translated? The scope and na- demned to repeat it. ture of programming languages that re- George Santayana, 1863–1952 [Bartlett 1992] quire translation into executable form covers a wide spectrum. Traditional pro- This oft-quoted line is all too applicable gramming languages like Ada, C, and in computer science. Ideas are generated, Java are included, as well as little lan- explored, set aside—only to be reinvented guages [Bentley 1988] such as regular years later. Such is the case with what expressions. is now called “just-in-time” (JIT) or dy- Traditionally, there are two approaches namic compilation, which refers to trans- to translation: compilation and interpreta- lation that occurs after a program begins tion. Compilation translates one language execution. into another—C to assembly language, for Strictly speaking, JIT compilation sys- example—with the implication that the tems (“JIT systems” for short) are com- translated form will be more amenable pletely unnecessary.
    [Show full text]
  • 9. Optimization
    9. Optimization Marcus Denker Optimization Roadmap > Introduction > Optimizations in the Back-end > The Optimizer > SSA Optimizations > Advanced Optimizations © Marcus Denker 2 Optimization Roadmap > Introduction > Optimizations in the Back-end > The Optimizer > SSA Optimizations > Advanced Optimizations © Marcus Denker 3 Optimization Optimization: The Idea > Transform the program to improve efficiency > Performance: faster execution > Size: smaller executable, smaller memory footprint Tradeoffs: 1) Performance vs. Size 2) Compilation speed and memory © Marcus Denker 4 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest Program Q: Program with no output, does not stop Opt(Q)? © Marcus Denker 5 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest Program Q: Program with no output, does not stop Opt(Q)? L1 goto L1 © Marcus Denker 6 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest ProgramQ: Program with no output, does not stop Opt(Q)? L1 goto L1 Halting problem! © Marcus Denker 7 Optimization Another way to look at it... > Rice (1953): For every compiler there is a modified compiler that generates shorter code. > Proof: Assume there is a compiler U that generates the shortest optimized program Opt(P) for all P. — Assume P to be a program that does not stop and has no output — Opt(P) will be L1 goto L1 — Halting problem. Thus: U does not exist. > There will
    [Show full text]
  • 1 Lecture 25
    I. Goals of This Lecture Lecture 25 • Beyond static compilation • Example of a complete system Dynamic Compilation • Use of data flow techniques in a new context • Experimental approach I. Motivation & Background II. Overview III. Compilation Policy IV. Partial Method Compilation V. Partial Dead Code Elimination VI. Escape Analysis VII. Results “Partial Method Compilation Using Dynamic Profile Information”, John Whaley, OOPSLA 01 (Slide content courtesy of John Whaley & Monica Lam.) Carnegie Mellon Carnegie Mellon Todd C. Mowry 15-745: Dynamic Compilation 1 15-745: Dynamic Compilation 2 Todd C. Mowry Static/Dynamic High-Level/Binary • Compiler: high-level à binary, static • Binary translator: Binary-binary; mostly dynamic • Interpreter: high-level, emulate, dynamic – Run “as-is” – Software migration • Dynamic compilation: high-level à binary, dynamic (x86 à alpha, sun, transmeta; 68000 à powerPC à x86) – machine-independent, dynamic loading – Virtualization (make hardware virtualizable) – cross-module optimization – Dynamic optimization (Dynamo Rio) – specialize program using runtime information – Security (execute out of code in a cache that is “protected”) • without profiling Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 3 Todd C. Mowry 15-745: Dynamic Compilation 4 Todd C. Mowry 1 Closed-world vs. Open-world II. Overview of Dynamic Compilation • Closed-world assumption (most static compilers) • Interpretation/Compilation policy decisions – all code is available a priori for analysis and compilation. – Choosing what and how to compile • Open-world assumption (most dynamic compilers) • Collecting runtime information – code is not available – Instrumentation – arbitrary code can be loaded at run time. – Sampling • Open-world assumption precludes many optimization opportunities. • Exploiting runtime information – Solution: Optimistically assume the best case, but provide a way out – frequently-executed code paths if necessary.
    [Show full text]
  • Toolchains Instructor: Prabal Dutta Date: October 2, 2012
    EECS 373: Design of Microprocessor-Based Systems Fall 2012 Lecture 3: Toolchains Instructor: Prabal Dutta Date: October 2, 2012 Note: Unless otherwise specified, these notes assume: (i) an ARM Cortex-M3 processor operating in little endian mode; (ii) the ARM EABI application binary interface; and (iii) the GNU GCC toolchain. Toolchains A complete software toolchain includes programs to convert source code into binary machine code, link together separately assembled/compiled code modules, disassemble the binaries, and convert their formats. Binary program file (.bin) Assembly Object Executable files (.s) files (.o) image file objcopy ld (linker) as objdump (assembler) Memory layout Disassembled Linker code (.lst) script (.ld) Figure 0.1: Assembler Toolchain. A typical GNU (GNU's Not Unix) assembler toolchain includes several programs that interact as shown in Figure 0.1 and perform the following functions: • as is the assembler and it converts human-readable assembly language programs into binary machine language code. It typically takes as input .s assembly files and outputs .o object files. • ld is the linker and it is used to combine multiple object files by resolving their external symbol references and relocating their data sections, and outputting a single executable file. It typically takes as input .o object files and .ld linker scripts and outputs .out executable files. • objcopy is a translation utility that copies and converts the contents of an object file from one format (e.g. .out) another (e.g. .bin). • objdump is a disassembler but it can also display various other information about object files. It is often used to disassemble binary files (e.g.
    [Show full text]
  • Dynamic Extension of Typed Functional Languages
    Dynamic Extension of Typed Functional Languages Don Stewart PhD Dissertation School of Computer Science and Engineering University of New South Wales 2010 Supervisor: Assoc. Prof. Manuel M. T. Chakravarty Co-supervisor: Dr. Gabriele Keller Abstract We present a solution to the problem of dynamic extension in statically typed functional languages with type erasure. The presented solution re- tains the benefits of static checking, including type safety, aggressive op- timizations, and native code compilation of components, while allowing extensibility of programs at runtime. Our approach is based on a framework for dynamic extension in a stat- ically typed setting, combining dynamic linking, runtime type checking, first class modules and code hot swapping. We show that this framework is sufficient to allow a broad class of dynamic extension capabilities in any statically typed functional language with type erasure semantics. Uniquely, we employ the full compile-time type system to perform run- time type checking of dynamic components, and emphasize the use of na- tive code extension to ensure that the performance benefits of static typing are retained in a dynamic environment. We also develop the concept of fully dynamic software architectures, where the static core is minimal and all code is hot swappable. Benefits of the approach include hot swappable code and sophisticated application extension via embedded domain specific languages. We instantiate the concepts of the framework via a full implementation in the Haskell programming language: providing rich mechanisms for dy- namic linking, loading, hot swapping, and runtime type checking in Haskell for the first time. We demonstrate the feasibility of this architecture through a number of novel applications: an extensible text editor; a plugin-based network chat bot; a simulator for polymer chemistry; and xmonad, an ex- tensible window manager.
    [Show full text]
  • Comparative Studies of Programming Languages; Course Lecture Notes
    Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
    [Show full text]
  • Value Numbering
    SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 0(0), 1–18 (MONTH 1900) Value Numbering PRESTON BRIGGS Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102 AND KEITH D. COOPER L. TAYLOR SIMPSON Rice University, 6100 Main Street, Mail Stop 41, Houston, TX 77005 SUMMARY Value numbering is a compiler-based program analysis method that allows redundant computations to be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with partitioning approaches based on the work of Alpern, Wegman, and Zadeck2. Historically, the hash-based algorithm has been applied to single basic blocks or extended basic blocks. We have improved the technique to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine into congruence classes and removes computations when one congruent value dominates another. We have extended this technique to remove computations that define a value in the set of available expressions (AVA IL )3. Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to remove even more redundancies. The paper presents a series of hash-based algorithms and a series of refinements to the partitioning technique. Within each series, it can be proved that each method discovers at least as many redundancies as its predecessors. Unfortunately, no such relationship exists between the hash-based and global techniques. On some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques, while on others, partitioning wins. We experimentally compare the improvements made by these techniques when applied to real programs. These results will be useful for commercial compiler writers who wish to assess the potential impact of each technique before implementation.
    [Show full text]
  • Bohm2013.Pdf (3.003Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Speeding up Dynamic Compilation Concurrent and Parallel Dynamic Compilation Igor B¨ohm I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Institute of Computing Systems Architecture School of Informatics University of Edinburgh 2013 Abstract The main challenge faced by a dynamic compilation system is to detect and translate frequently executed program regions into highly efficient native code as fast as possible. To efficiently reduce dynamic compilation latency, a dy- namic compilation system must improve its workload throughput, i.e. com- pile more application hotspots per time. As time for dynamic compilation adds to the overall execution time, the dynamic compiler is often decoupled and operates in a separate thread independent from the main execution loop to reduce the overhead of dynamic compilation.
    [Show full text]
  • Language and Compiler Support for Dynamic Code Generation by Massimiliano A
    Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto S.B., Massachusetts Institute of Technology (1995) M.Eng., Massachusetts Institute of Technology (1995) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A u th or ............................................................................ Department of Electrical Engineering and Computer Science June 23, 1999 Certified by...............,. ...*V .,., . .* N . .. .*. *.* . -. *.... M. Frans Kaashoek Associate Pro essor of Electrical Engineering and Computer Science Thesis Supervisor A ccepted by ................ ..... ............ ............................. Arthur C. Smith Chairman, Departmental CommitteA on Graduate Students me 2 Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto Submitted to the Department of Electrical Engineering and Computer Science on June 23, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Dynamic code generation, also called run-time code generation or dynamic compilation, is the cre- ation of executable code for an application while that application is running. Dynamic compilation can significantly improve the performance of software by giving the compiler access to run-time infor- mation that is not available to a traditional static compiler. A well-designed programming interface to dynamic compilation can also simplify the creation of important classes of computer programs. Until recently, however, no system combined efficient dynamic generation of high-performance code with a powerful and portable language interface. This thesis describes a system that meets these requirements, and discusses several applications of dynamic compilation.
    [Show full text]