1 Lecture 25

Total Page:16

File Type:pdf, Size:1020Kb

1 Lecture 25 I. Goals of This Lecture Lecture 25 • Beyond static compilation • Example of a complete system Dynamic Compilation • Use of data flow techniques in a new context • Experimental approach I. Motivation & Background II. Overview III. Compilation Policy IV. Partial Method Compilation V. Partial Dead Code Elimination VI. Escape Analysis VII. Results “Partial Method Compilation Using Dynamic Profile Information”, John Whaley, OOPSLA 01 (Slide content courtesy of John Whaley & Monica Lam.) Carnegie Mellon Carnegie Mellon Todd C. Mowry 15-745: Dynamic Compilation 1 15-745: Dynamic Compilation 2 Todd C. Mowry Static/Dynamic High-Level/Binary • Compiler: high-level à binary, static • Binary translator: Binary-binary; mostly dynamic • Interpreter: high-level, emulate, dynamic – Run “as-is” – Software migration • Dynamic compilation: high-level à binary, dynamic (x86 à alpha, sun, transmeta; 68000 à powerPC à x86) – machine-independent, dynamic loading – Virtualization (make hardware virtualizable) – cross-module optimization – Dynamic optimization (Dynamo Rio) – specialize program using runtime information – Security (execute out of code in a cache that is “protected”) • without profiling Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 3 Todd C. Mowry 15-745: Dynamic Compilation 4 Todd C. Mowry 1 Closed-world vs. Open-world II. Overview of Dynamic Compilation • Closed-world assumption (most static compilers) • Interpretation/Compilation policy decisions – all code is available a priori for analysis and compilation. – Choosing what and how to compile • Open-world assumption (most dynamic compilers) • Collecting runtime information – code is not available – Instrumentation – arbitrary code can be loaded at run time. – Sampling • Open-world assumption precludes many optimization opportunities. • Exploiting runtime information – Solution: Optimistically assume the best case, but provide a way out – frequently-executed code paths if necessary. Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 5 Todd C. Mowry 15-745: Dynamic Compilation 6 Todd C. Mowry Speculative Inlining III. Compilation Policy V-Table Method 1 Bytecode • ∆Ttotal = Tcompile – (nexecutions * Timprovement) Method 1 Method 2 Bytecode Method 2 – If ∆Ttotal is negative, our compilation policy decision was effective. Method 3 Bytecode Method 3 Method 4 Method 4 Bytecode • We can try to: Method 5 – Reduce Tcompile (faster compile times) Method 5 Bytecode • Virtual call sites are deadly. – Increase Timprovement (generate better code) – Kill optimization opportunities – Focus on large nexecutions (compile hot spots) – Virtual dispatch is expensive on modern CPUs • – Very common in object-oriented code 80/20 rule: Pareto Principle – 20% of the work for 80% of the advantage • Speculatively inline the most likely call target based on class hierarchy or profile information. – Many virtual call sites have only one target, so this technique is very effective in practice. Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 7 Todd C. Mowry 15-745: Dynamic Compilation 8 Todd C. Mowry 2 Latency vs. Throughput Multi-Stage Dynamic Compilation System • Tradeoff: startup speed vs. execution performance interpreted Stage 1: code Startup speed Execution performance when execution count = t1 (e.g. 2000) Interpreter Best Poor Execution count is the sum of ‘Quick’ compiler Fair Fair compiled method invocations & back edges Stage 2: executed. Optimizing compiler Poor Best code when execution count = t2 (e.g. 25000) fully Stage 3: optimized code Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 9 Todd C. Mowry 15-745: Dynamic Compilation 10 Todd C. Mowry Granularity of Compilation Example: SpecJVM db • Compilation time is proportional to the amount of code being compiled. void read_db(String fn) { • Many optimizations are not linear. int n = 0, act = 0; byte buffer[] = null; try { • Methods can be large, especially after inlining. FileInputStream sif = new FileInputStream(fn); • Cutting inlining too much hurts performance considerably. buffer = new byte[n]; • Even “hot” methods typically contain some code that is rarely or never Hot while ((b = sif.read(buffer, act, n-act))>0) { executed. loop act = act + b; } sif.close(); if (act != n) { /* lots of error handling code, rare */ } } catch (IOException ioe) { /* lots of error handling code, rare */ } } Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 11 Todd C. Mowry 15-745: Dynamic Compilation 12 Todd C. Mowry 3 Example: SpecJVM db Optimize hot “regions”, not methods void read_db(String fn) { • Optimize only the most frequently executed segments within a method. int n = 0, act = 0; byte buffer[] = null; – Simple technique: try { • any basic block executed during Stage 2 is considered to be hot. FileInputStream sif = new FileInputStream(fn); • Beneficial secondary effect of improving optimization opportunities on buffer = new byte[n]; the common paths. while ((b = sif.read(buffer, act, n-act))>0) { act = act + b; } sif.close(); Lots of if (act != n) { rare code! /* lots of error handling code, rare */ } } catch (IOException ioe) { /* lots of error handling code, rare */ } } Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 13 Todd C. Mowry 15-745: Dynamic Compilation 14 Todd C. Mowry Method-at-a-Time Strategy Actual Basic Blocks Executed 100.00% 100.00% Linpack Linpack JavaC UP JavaC UP 80.00% 80.00% JavaLEX JavaLEX SwingSet SwingSet 60.00% check 60.00% check com press com press 40.00% je s s 40.00% je s s db db ja v a c ja v a c 20.00% 20.00% mpegaud mpegaud of basic blocks compiled ofbasic blocks compiled of basic blocks executed executed of basic blocks % mtrt mtrt % 0.00% 0.00% ja c k ja c k 1 10 100 500 1000 2000 5000 1 10 100 500 1000 2000 5000 execution threshold execution threshold Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 15 Todd C. Mowry 15-745: Dynamic Compilation 16 Todd C. Mowry 4 Dynamic Code Transformations IV. Partial Method Compilation • Compiling partial methods 1. Based on profile data, determine the set of rare blocks. • Partial dead code elimination – Use code coverage information from the first compiled version • Escape analysis Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 17 Todd C. Mowry 15-745: Dynamic Compilation 18 Todd C. Mowry Partial Method Compilation Partial Method Compilation 2. Perform live variable analysis. 3. Redirect the control flow edges that targeted rare blocks, and remove – Determine the set of live variables at rare block entry points. the rare blocks. live: x,y,z to interpreter… Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 19 Todd C. Mowry 15-745: Dynamic Compilation 20 Todd C. Mowry 5 Partial Method Compilation Partial Method Compilation 4. Perform compilation normally. 5. Record a map for each interpreter transfer point. – Analyses treat the interpreter transfer point as an unanalyzable – In code generation, generate a map that specifies the location, in method call. registers or memory, of each of the live variables. – Maps are typically < 100 bytes live: x,y,z x: sp - 4 y: r1 z: sp - 8 Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 21 Todd C. Mowry 15-745: Dynamic Compilation 22 Todd C. Mowry V. Partial Dead Code Elimination Partial Dead Code Example • Move computation that is only live on a rare path into the rare block, x = 0; if (rare branch 1) { saving computation in the common case. if (rare branch 1){ x = 0; ... ... z = x + y; z = x + y; ... ... } } if (rare branch 2){ if (rare branch 2) { ... x = 0; a = x + z; ... ... a = x + z; } ... } Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 23 Todd C. Mowry 15-745: Dynamic Compilation 24 Todd C. Mowry 6 IV. Escape Analysis Escape Analysis • Escape analysis finds objects that do not escape a method or a thread. • Stack allocate objects that don’t escape in the common blocks. – “Captured” by method: can be allocated on the stack or in registers. • Eliminate synchronization on objects that don’t escape the common – “Captured” by thread: can avoid synchronization operations. blocks. • All Java objects are normally heap allocated, so this is a big win. • If a branch to a rare block is taken: – Copy stack-allocated objects to the heap and update pointers. – Reapply eliminated synchronizations. Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 25 Todd C. Mowry 15-745: Dynamic Compilation 26 Todd C. Mowry VII. Run Time Improvement 100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% check compress jess db javac mpegaud mtrt jack SwingSet linpack JLex JCup First bar: original (Whole method opt) Second bar: Partial Method Comp (PMC) Third bar: PMC + opts Bottom bar: Execution time if code was compiled/opt. from the beginning Carnegie Mellon 15-745: Dynamic Compilation 27 Todd C. Mowry 7 .
Recommended publications
  • The LLVM Instruction Set and Compilation Strategy
    The LLVM Instruction Set and Compilation Strategy Chris Lattner Vikram Adve University of Illinois at Urbana-Champaign lattner,vadve ¡ @cs.uiuc.edu Abstract This document introduces the LLVM compiler infrastructure and instruction set, a simple approach that enables sophisticated code transformations at link time, runtime, and in the field. It is a pragmatic approach to compilation, interfering with programmers and tools as little as possible, while still retaining extensive high-level information from source-level compilers for later stages of an application’s lifetime. We describe the LLVM instruction set, the design of the LLVM system, and some of its key components. 1 Introduction Modern programming languages and software practices aim to support more reliable, flexible, and powerful software applications, increase programmer productivity, and provide higher level semantic information to the compiler. Un- fortunately, traditional approaches to compilation either fail to extract sufficient performance from the program (by not using interprocedural analysis or profile information) or interfere with the build process substantially (by requiring build scripts to be modified for either profiling or interprocedural optimization). Furthermore, they do not support optimization either at runtime or after an application has been installed at an end-user’s site, when the most relevant information about actual usage patterns would be available. The LLVM Compilation Strategy is designed to enable effective multi-stage optimization (at compile-time, link-time, runtime, and offline) and more effective profile-driven optimization, and to do so without changes to the traditional build process or programmer intervention. LLVM (Low Level Virtual Machine) is a compilation strategy that uses a low-level virtual instruction set with rich type information as a common code representation for all phases of compilation.
    [Show full text]
  • Dynamic Extension of Typed Functional Languages
    Dynamic Extension of Typed Functional Languages Don Stewart PhD Dissertation School of Computer Science and Engineering University of New South Wales 2010 Supervisor: Assoc. Prof. Manuel M. T. Chakravarty Co-supervisor: Dr. Gabriele Keller Abstract We present a solution to the problem of dynamic extension in statically typed functional languages with type erasure. The presented solution re- tains the benefits of static checking, including type safety, aggressive op- timizations, and native code compilation of components, while allowing extensibility of programs at runtime. Our approach is based on a framework for dynamic extension in a stat- ically typed setting, combining dynamic linking, runtime type checking, first class modules and code hot swapping. We show that this framework is sufficient to allow a broad class of dynamic extension capabilities in any statically typed functional language with type erasure semantics. Uniquely, we employ the full compile-time type system to perform run- time type checking of dynamic components, and emphasize the use of na- tive code extension to ensure that the performance benefits of static typing are retained in a dynamic environment. We also develop the concept of fully dynamic software architectures, where the static core is minimal and all code is hot swappable. Benefits of the approach include hot swappable code and sophisticated application extension via embedded domain specific languages. We instantiate the concepts of the framework via a full implementation in the Haskell programming language: providing rich mechanisms for dy- namic linking, loading, hot swapping, and runtime type checking in Haskell for the first time. We demonstrate the feasibility of this architecture through a number of novel applications: an extensible text editor; a plugin-based network chat bot; a simulator for polymer chemistry; and xmonad, an ex- tensible window manager.
    [Show full text]
  • Comparative Studies of Programming Languages; Course Lecture Notes
    Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
    [Show full text]
  • Bohm2013.Pdf (3.003Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Speeding up Dynamic Compilation Concurrent and Parallel Dynamic Compilation Igor B¨ohm I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Institute of Computing Systems Architecture School of Informatics University of Edinburgh 2013 Abstract The main challenge faced by a dynamic compilation system is to detect and translate frequently executed program regions into highly efficient native code as fast as possible. To efficiently reduce dynamic compilation latency, a dy- namic compilation system must improve its workload throughput, i.e. com- pile more application hotspots per time. As time for dynamic compilation adds to the overall execution time, the dynamic compiler is often decoupled and operates in a separate thread independent from the main execution loop to reduce the overhead of dynamic compilation.
    [Show full text]
  • Language and Compiler Support for Dynamic Code Generation by Massimiliano A
    Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto S.B., Massachusetts Institute of Technology (1995) M.Eng., Massachusetts Institute of Technology (1995) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A u th or ............................................................................ Department of Electrical Engineering and Computer Science June 23, 1999 Certified by...............,. ...*V .,., . .* N . .. .*. *.* . -. *.... M. Frans Kaashoek Associate Pro essor of Electrical Engineering and Computer Science Thesis Supervisor A ccepted by ................ ..... ............ ............................. Arthur C. Smith Chairman, Departmental CommitteA on Graduate Students me 2 Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto Submitted to the Department of Electrical Engineering and Computer Science on June 23, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Dynamic code generation, also called run-time code generation or dynamic compilation, is the cre- ation of executable code for an application while that application is running. Dynamic compilation can significantly improve the performance of software by giving the compiler access to run-time infor- mation that is not available to a traditional static compiler. A well-designed programming interface to dynamic compilation can also simplify the creation of important classes of computer programs. Until recently, however, no system combined efficient dynamic generation of high-performance code with a powerful and portable language interface. This thesis describes a system that meets these requirements, and discusses several applications of dynamic compilation.
    [Show full text]
  • Transparent Dynamic Optimization: the Design and Implementation of Dynamo
    Transparent Dynamic Optimization: The Design and Implementation of Dynamo Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia HP Laboratories Cambridge HPL-1999-78 June, 1999 E-mail: [email protected] dynamic Dynamic optimization refers to the runtime optimization optimization, of a native program binary. This report describes the compiler, design and implementation of Dynamo, a prototype trace selection, dynamic optimizer that is capable of optimizing a native binary translation program binary at runtime. Dynamo is a realistic implementation, not a simulation, that is written entirely in user-level software, and runs on a PA-RISC machine under the HPUX operating system. Dynamo does not depend on any special programming language, compiler, operating system or hardware support. Contrary to intuition, we demonstrate that it is possible to use a piece of software to improve the performance of a native, statically optimized program binary, while it is executing. Dynamo not only speeds up real application programs, its performance improvement is often quite significant. For example, the performance of many +O2 optimized SPECint95 binaries running under Dynamo is comparable to the performance of their +O4 optimized version running without Dynamo. Internal Accession Date Only Ó Copyright Hewlett-Packard Company 1999 Contents 1 INTRODUCTION ........................................................................................... 7 2 RELATED WORK ......................................................................................... 9 3 OVERVIEW
    [Show full text]
  • Performance Analyses and Code Transformations for MATLAB Applications Patryk Kiepas
    Performance analyses and code transformations for MATLAB applications Patryk Kiepas To cite this version: Patryk Kiepas. Performance analyses and code transformations for MATLAB applications. Computa- tion and Language [cs.CL]. Université Paris sciences et lettres, 2019. English. NNT : 2019PSLEM063. tel-02516727 HAL Id: tel-02516727 https://pastel.archives-ouvertes.fr/tel-02516727 Submitted on 24 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Préparée à MINES ParisTech Analyses de performances et transformations de code pour les applications MATLAB Performance analyses and code transformations for MATLAB applications Soutenue par Composition du jury : Patryk KIEPAS Christine EISENBEIS Le 19 decembre 2019 Directrice de recherche, Inria / Paris 11 Présidente du jury João Manuel Paiva CARDOSO Professeur, University of Porto Rapporteur Ecole doctorale n° 621 Erven ROHOU Ingénierie des Systèmes, Directeur de recherche, Inria Rennes Rapporteur Matériaux, Mécanique, Michel BARRETEAU Ingénieur de recherche, THALES Examinateur Énergétique Francois GIERSCH Ingénieur de recherche, THALES Invité Spécialité Claude TADONKI Informatique temps-réel, Chargé de recherche, MINES ParisTech Directeur de thèse robotique et automatique Corinne ANCOURT Maître de recherche, MINES ParisTech Co-directrice de thèse Jarosław KOŹLAK Professeur, AGH UST Co-directeur de thèse 2 Abstract MATLAB is an interactive computing environment with an easy programming language and a vast library of built-in functions.
    [Show full text]
  • Is Dynamic Compilation Possible for Embedded System ? Scopes 2015, St Goar
    Is dynamic compilation possible for embedded system ? Scopes 2015, St Goar Victor Lomüller, Henri-Pierre Charles CEA DACLE / Grenoble June 2 2015 www.cea.fr & Cliquez pour modifier le Introduction : Wake Up Questions Session style du titre FAQ What do you mean by dynamic compilation ? : a compilation system where the binary code is generated at run-time Like a Java JIT system ? Yes exactly ! But not only for portability : for performances & data / architecture adaptation But Java JIT can not be used on ES ! Yes ! Because it need a huge memory size, introduce lag, is slow in the interpreted part, takes time to generate binary code, ... because it’s java ;-) What do you want ? We want to have flexible and fast code generation at run-time. Use it to specialize (simplify) binary code at run-time.There is many application domains ! Is dynamic compilation possible for embedded system ? | DACLE Division | June 2 2015 | 2 & © CEA. All rights reserved Cliquez pour modifier le Intro Compilers Classical Compiler architecture : GCC, LLVM,style Java JIT du titre Driven by performance only Mono architecture Not energy aware Not data dependent “Compilation time” typology Is dynamic compilation possible for embedded system ? | DACLE Division | June 2 2015 | 3 & © CEA. All rights reserved Cliquez pour modifier le Intro Compilers Future Compilers Architecture style du titre Multi objective (execution time, power, thermal constraints) Multi-target (Heterogeneous multi SoC) Data driven (dynamically) Using “Compilation time” Is dynamic compilation possible
    [Show full text]
  • Csc 553 Principles of Compilation 2 : Interpreters Department Of
    Compiler tokens source Lexer Parser CSc 553 AST Principles of Compilation IR AST VM Code Interm. Semantic Gen Code Gen Analyser 2 : Interpreters VM Department of Computer Science Interpreter University of Arizona Get Next Execute Instruction Instruction [email protected] Copyright c 2011 Christian Collberg Kinds of Interpreters An interpreter is like a CPU, only in software. The compiler generates virtual machine (VM) code rather than native machine code. "APL/Prolog−style (load−and−go/interactive) interpreter" The interpreter executes VM instructions rather than native machine code. Read, lex, read Source parse, VM eval Code Code print Interpreters are semantics slow Often 10–100 times slower than executing machine Interpret code directly. portable The virtual machine code is not tied to any particular Read, lex, Source VM parse, CodeFile.vm architecture. Code Code semantics Interpreters work well with read Read very high-level, dynamic languages CodeFile.vm eval (APL,Prolog,ICON) where a lot is unknown at VM print compile-time (array bounds, etc). "Java−style interpreter" Interpret Kinds of Interpreters. Actions in an Interpreter Just−In−Time (JIT,Dynamic) Compiler Read, lex, Source VM parse, CodeFile.vm Internally, an interpreter consists of Code Code semantics 1 The interpreter engine, which executes the VM instructions. 2 Memory for storing user data. Often separated as a heap and a stack. Native 3 A stream of VM instructions. CodeFile.vm Compile Execute Code Actions in an Interpreter. Stack-Based Instruction Sets Instruct− ionstream add I := Get next instruction. Many virtual machine instruction sets (e.g. Java bytecode, store Forth) are stack based.
    [Show full text]
  • Interprocedural Type Specialization of Javascript Programs Without Type Analysis∗
    Interprocedural Type Specialization of JavaScript Programs Without Type Analysis∗ Maxime Chevalier-Boisvert1 and Marc Feeley2 1 DIRO, Université de Montréal Montreal, Quebec, Canada [email protected] 2 DIRO, Université de Montréal Montreal, Quebec, Canada [email protected] Abstract Previous work proposed lazy basic block versioning, a technique for just-in-time compilation of dynamic languages which we believe represents an interesting point in the design space. Basic block versioning is simple to implement, simple enough that a single developer can build a complete just-in-time compiler for JavaScript in a year, yet it performs surprisingly well as it propagates context-sensitive type information to generate type-specialized code on the fly. In this paper, we demonstrate that lazy basic block versioning can be extended in simple ways to propagate type information across function call boundaries. This gives some of the benefits of whole-program analysis, or a tracing compiler, without having to implement the machinery for either. We have implemented this proposal in the Higgs JavaScript virtual machine and report on the empirical evaluation of this system on a set of industry standard benchmarks. The approach eliminates 94.3% of dynamic type tests on average, which we show is more than what is achievable with any static whole-program type analysis. 1998 ACM Subject Classification D.3.4 Programming Languages: Processors—compilers, op- timization, code generation, run-time environments Keywords and phrases Just-In-Time Compilation, Dynamic Language, Optimization, Object Oriented, JavaScript Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.7 1 Introduction A production compiler for a widely used dynamic language such as JavaScript is an intricate piece of software, usually the outcome of 10 to 100 developer-years of effort.
    [Show full text]
  • Sulong - Execution of LLVM-Based Languages on the JVM
    Position Paper: Sulong - Execution of LLVM-Based Languages on the JVM Sulong - Execution of LLVM-Based Languages on the JVM Position Paper Manuel Rigger Matthias Grimmer Hanspeter Mossenb¨ ock¨ Johannes Kepler University, Linz, Johannes Kepler University, Linz, Johannes Kepler University, Linz, Austria Austria Austria [email protected] [email protected] [email protected] Abstract Fortran C/C++ … For the last decade, the Java Virtual Machine (JVM) has GCC Clang other front-end been a popular platform to host languages other than Java. +DragonEgg Language implementation frameworks like Truffle allow the implementation of dynamic languages such as JavaScript compile to or Ruby with competitive performance and completeness. LLVM However, statically typed languages are still rare under Truf- tools LLVM IR fle. We present Sulong, an LLVM IR interpreter that brings all LLVM-based languages including C, C++, and Fortran executes in one stroke to the JVM. Executing these languages on the LLVM IR Interpreter JVM enables a wide area of future research, including high- performance interoperability between high-level and low- Truffle level languages, combination of static and dynamic opti- Graal mizations, and a memory-safe execution of otherwise unsafe GraalVM and unmanaged languages. Figure 1. Sulong Interpreter Categories and Subject Descriptors D.3.4 [Programming Languages]: Processors - Run-time environments, Code as C++, D, Fortran, Objective-C, and Objective-C++. We generation, Interpreters, Compilers, Optimization present Sulong, an ecosystem that can execute and dynami- Keywords Sulong, LLVM, Truffle, dynamic compilation, cally compile LLVM IR on a JVM, and can thus handle any static compilation language that can be compiled to LLVM IR.
    [Show full text]
  • Practical Partial Evaluation for High-Performance Dynamic Language Runtimes
    Practical Partial Evaluation for High-Performance Dynamic Language Runtimes Thomas Wurthinger¨ ∗ Christian Wimmer∗ Christian Humer∗ Andreas Woߨ ∗ Lukas Stadler∗ Chris Seaton∗ Gilles Duboscq∗ Doug Simon∗ Matthias Grimmery ∗ y Oracle Labs Institute for System Software, Johannes Kepler University Linz, Austria fthomas.wuerthinger, christian.wimmer, christian.humer, andreas.woess, lukas.stadler, chris.seaton, gilles.m.duboscq, [email protected] [email protected] Abstract was first implemented for the SELF language [23]: a multi- Most high-performance dynamic language virtual machines tier optimization system with adaptive optimization and de- duplicate language semantics in the interpreter, compiler, optimization. Multiple tiers increase the implementation and and runtime system, violating the principle to not repeat maintenance costs for a VM: In addition to a language- yourself. In contrast, we define languages solely by writ- specific optimizing compiler, a separate first-tier execution ing an interpreter. Compiled code is derived automatically system must be implemented [2, 4, 21]. Even though the using partial evaluation (the first Futamura projection). The complexity of an interpreter or a baseline compiler is lower interpreter performs specializations, e.g., augments the in- than the complexity of an optimizing compiler, implement- terpreted program with type information and profiling infor- ing them is far from trivial [45]. Additionally, they need to mation. Partial evaluation incorporates these specializations. be maintained and ported to new architectures. This makes partial evaluation practical in the context of dy- But more importantly, the semantics of a language need namic languages, because it reduces the size of the compiled to be implemented multiple times in different styles: For code while still compiling in all parts of an operation that are the first-tier interpreter or baseline compiler, language op- relevant for a particular program.
    [Show full text]