Continuous Program Optimization Via Advanced Dynamic Compilation Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Continuous Program Optimization Via Advanced Dynamic Compilation Techniques Continuous Program Optimization via Advanced Dynamic Compilation Techniques Marco Festa, Nicole Gervasoni, Stefano Cherubin, Giovanni Agosta Politecnico di Milano, DEIB {marco2.festa,nicoleannamaria.gervasoni}@mail.polimi.it,[email protected],[email protected] ABSTRACT together with the growth of HPC infrastructures toward the Ex- In High Performance Computing, it is often useful to fine tune an ascale, will strain the ability of HPC centers to provide sufficient application code via recompilation of specific computational inten- personnel for these activities, due to the increased number of users. sive code fragments to leverage runtime knowledge. Traditional To ease this strain, practices such as autotuning and continuous compilers rarely provide such capabilities, but solutions such as optimisation [6–8] can be successfully applied to make the appli- libVC exist to allow C/C++ code to employ dynamic compilation. cation itself more aware of its performance and able to cope with We evaluate the impact of the introduction of Just-in-Time compila- platform heterogeneity and workload changes which are not pre- tion in a framework supporting partial dynamic (re-)compilation of dictable at compile-time, and for which traditional techniques such functions to provide continuous optimization in high performance as profile-guided optimisation may fail due to the difficulty offind- environments. We show that Just-In-Time solutions can have com- ing small profile data sets that are representative of the large ones parable performance in terms of code quality with respect to the actually used in the HPC runs. In these cases, which are becoming libVC alternatives, and it can provide smaller compilation over- more and more common [9], dynamic approaches can prove more head. We further demonstrate the strength of our approach against effective. another interpreter-based dynamic evaluation solution from the The operation of such a dynamic approach chiefly consists in state-of-the-art. generating more than one version of the code of compute-intensive kernel, and then selecting the best version at each invocation of KEYWORDS the kernel. The selection can be performed as part of an autotuning algorithm, which can be used both to tune software parameters Dynamic Compilation, JIT, Continuous Program Optimization and to search the space of compiler optimizations for optimal so- ACM Reference Format: lutions [10]. Autotuning frameworks can select one of a set of Marco Festa, Nicole Gervasoni, Stefano Cherubin, Giovanni Agosta. 2019. different versions of the same computational kernel to best fitthe Continuous Program Optimization via Advanced Dynamic Compilation HPC system runtime conditions, such as system resource partition- Techniques. In Proceedings of PARMA-DITAM Workshop (PARMA-DITAM ing, as long as such versions are generated at compile time. Some 2019). ACM, New York, NY, USA, 6 pages. https://doi.org/00.001/000_1 frameworks are actually able to perform continuous optimization, generally through specific versions of a dynamic compiler [11; 12], 1 INTRODUCTION or through cloud-based platforms [13], or by leveraging an external The trend towards the democratisation of access to High Perfor- compiler through a dedicated API [14]. mance Computing (HPC) infrastructures [1; 2] is leading a wider In this paper, we introduce an extension of a state-of-the-art spectrum of developers to work on applications that will run on dynamic compilation library to support the Just In Time (JIT) com- complex, potentially heterogeneous architectures. Yet, the design pilation paradigm. We discuss the implementation of easy-to-use and the implementation of HPC applications are difficult tasks for APIs to realize the continuous optimization approach. Finally, we which several tools and languages are used [3; 4]. Typically, each compare the dynamic compilation overhead due to this kind of HPC center has its own set of tools, which collect the expertise and compilation technique with other dynamic compilation techniques work of many experts across the years. Such tools can go from ex- in the state-of-the art. tensive frameworks, such as the OmpSs/Nanos++/Mercurium tool The rest of this paper is organized as follows. Section 2 described set from Barcelona Supercomputing Center1, to simpler collections the Just In Time paradigm, and the implementation of the related of scripts, which are nonetheless critical to achieve the expected APIs within a C++ library. Section 3 discusses the experimental performance [5]. Thus, specialised help is often needed in the form results. Section 4 provides an overview of the related works and a of HPC center staff, developers who are accustomed to the practices comparative analysis with them. Finally, we draw some conclusions of HPC systems and can provide expert knowledge to support the in section 5. application domain expert. Still, the same democratisation trend, 2 A JUST-IN-TIME SOLUTION 1https://pm.bsc.es Continuous optimization requires the program to re-shape portions Permission to make digital or hard copies of part or all of this work for personal or of its own executable code to adapt them to runtime conditions. classroom use is granted without fee provided that copies are not made or distributed This capability is very common among interpreted programming for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. languages, as the instructions are usually parsed and issued at run- For all other uses, contact the owner/author(s). time. In the context of compiled programming languages, instead, PARMA-DITAM 2019, January 2019, Valencia, ES it is more complex to achieve this behaviour, as it requires to defer © 2018 Copyright held by the owner/author(s). ACM ISBN 123-4567-24-567/08/06. the full compilation process at runtime. Although interpreted lan- https://doi.org/00.001/000_1 guages provide greater flexibility, they typically have throughput PARMA-DITAM 2019, January 2019, Valencia, ES Festa et al. .hpp running program which is much lower with respect to compiled ones. Thus, in HPC .cpp systems it is preferable to have a reconfiguration time span to opti- .cpp .cpp mize the software rather than having a constant overhead on each save / load instruction. 3 load function pointer libVC 2.1 Continuous Optimization via Dynamic clang 1 setup gcc Compilation -fopenmp-O3 compile JITCompiler compiler=gcc Dynamic compilation techniques allow to compile source code kernel.cpp -DvarPi=3.14 into executable code after the software itself has been deployed. source 2 file LLVM Whenever important runtime conditions or checkpoints are met, -Dpivot=5 a dynamic re-configuration of the software system may entail a optional dynamic (re-)compilation of its source code to apply a different set of optimization which better fit the incoming workload. Dynamic compilation can be performed via ad-hoc software hypervisors, via Figure 1: Continuous Program Optimization flow with dynamic generation and loading of software libraries, or via the libVC infrastructure, including the proposed extension integration of a compiler stack within the adaptive software system itself. features three different implementation of compiler APIs: System- The former approach suffers from the difficulty of maintaining Compiler, SystemCompilerOptimizer, and ClangLibCompiler. both the hypervisor and the code to use it. This approach requires The first two solutions require to be configured to properly inter- a deep knowledge of the hypervisor system, and an accurate con- act with external compilers already deployed on the host machine. figuration over the software system. The latter implements the Compiler as a library paradigm, and The dynamic generation and loading of software libraries is therefore needs llvm to be installed in the host machine. We extend a platform-dependent solution which requires fine tuning of the libVC with JITCompiler, an additional implementation for the compiler configuration at deploy time. Moreover, this approach Compiler interface, with the aim of providing true JIT compilation requires to access and to manage additional persistent memory capabilities. Figure 1 shows the infrastructure of libVC when it is space to handle the dynamically-generated shared objects. This used to perform continuous program optimization. We highlight problem has a non-trivial impact on HPC infrastructures, as such the new component with a red box under the other alternatives systems usually aims at minimizing the access to persistent memory provided by the framework. due to its intrinsic high-latency. Although recent proposals have To pursue continuity with the original implementation of libVC, been made to simplify the configuration of compiler settings [14], we base our implementation of JITCompiler on the llvm compiler the limitation given by the memory access still persists. The JIT framework. In particular, we support the generation of llvm-ir bit- paradigm removes the problems of the abovementioned approaches, code files, the optimization of such intermediate representation, and as it does not create any persistent object and it integrates the full the compilation of it into executable code. Whilst the bitcode gen- compiler functionalities within the adaptive application. eration and optimization are implemented similarly to the Clang as a library paradigm, the generation of executable code is extremely 2.2 Principles of Just-in-Time
Recommended publications
  • US 2002/0066086 A1 Linden (43) Pub
    US 2002O066086A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0066086 A1 Linden (43) Pub. Date: May 30, 2002 (54) DYNAMIC RECOMPLER (52) U.S. Cl. ............................................ 717/145; 717/151 (76) Inventor: Randal N. Linden, Los Angeles, CA (57) ABSTRACT (US) A method for dynamic recompilation of Source Software Correspondence Address: instructions for execution by a target processor, which LU & LIU LLP considers not only the Specific Source instructions, but also 811 WEST SEVENTH STREET, SUITE 1100 the intent and purpose of the instructions, to translate and LOS ANGELES, CA 90017 (US) optimize a set of equivalent code for the target processor. The dynamic recompiler determines what the Source opera (21) Appl. No.: 09/755,542 tion code is trying to accomplish and the optimum way of Filed: Jan. 5, 2001 doing it at the target processor, in an “interpolative' and (22) context Sensitive fashion. The Source instructions are pro Related U.S. Application Data cessed in blocks of varying Sizes by the dynamic recompiler, which considers the instructions that come before and after (63) Non-provisional of provisional application No. a current instruction to determine the most efficient approach 60/175,008, filed on Jan. 7, 2000. out of Several available approaches for encoding the opera tion code for the target processor to perform the equivalent Publication Classification tasks Specified by the Source instructions. The dynamic compiler comprises a decoding Stage, an optimization Stage (51) Int. Cl. ................................................. G06F 9/45 and an encoding Stage. Patent Application Publication May 30, 2002 Sheet 1 of 3 US 2002/0066086 A1 Patent Application Publication May 30, 2002 Sheet 2 of 3 US 2002/0066086 A1 - \O, 2 Patent Application Publication May 30, 2002 Sheet 3 of 3 US 2002/0066086 A1 fo, 3 US 2002/0066086 A1 May 30, 2002 DYNAMIC RECOMPLER more target instructions to be executed in response to a given Source instruction.
    [Show full text]
  • The LLVM Instruction Set and Compilation Strategy
    The LLVM Instruction Set and Compilation Strategy Chris Lattner Vikram Adve University of Illinois at Urbana-Champaign lattner,vadve ¡ @cs.uiuc.edu Abstract This document introduces the LLVM compiler infrastructure and instruction set, a simple approach that enables sophisticated code transformations at link time, runtime, and in the field. It is a pragmatic approach to compilation, interfering with programmers and tools as little as possible, while still retaining extensive high-level information from source-level compilers for later stages of an application’s lifetime. We describe the LLVM instruction set, the design of the LLVM system, and some of its key components. 1 Introduction Modern programming languages and software practices aim to support more reliable, flexible, and powerful software applications, increase programmer productivity, and provide higher level semantic information to the compiler. Un- fortunately, traditional approaches to compilation either fail to extract sufficient performance from the program (by not using interprocedural analysis or profile information) or interfere with the build process substantially (by requiring build scripts to be modified for either profiling or interprocedural optimization). Furthermore, they do not support optimization either at runtime or after an application has been installed at an end-user’s site, when the most relevant information about actual usage patterns would be available. The LLVM Compilation Strategy is designed to enable effective multi-stage optimization (at compile-time, link-time, runtime, and offline) and more effective profile-driven optimization, and to do so without changes to the traditional build process or programmer intervention. LLVM (Low Level Virtual Machine) is a compilation strategy that uses a low-level virtual instruction set with rich type information as a common code representation for all phases of compilation.
    [Show full text]
  • A Dynamically Recompiling ARM Emulator POWERED
    POWERED TACARM A Dynamically Recompiling ARM Emulator 3rd year project report 2000-2001 University of Warwick Written by David Sharp Supervised by Graham Martin 2 Abstract Dynamically recompiling from one machine code to another can be used to emulate modern microprocessors at realistic speeds. This report is a discussion of the techniques used in implementing a dynamically recompiling emulator of an ARM processor for use in an emulation of a complete computer system. Keywords Emulation, Dynamic Recompilation, Binary Translation, Just-In-Time compilation, Virtual Machine, Microprocessor Simulation, Intermediate Code, ARM. 3 Contents 1. Introduction 7 1.1. What is emulation? 7 1.2. Applications of emulation 7 1.3. Processor emulation techniques 9 1.4. This Project 13 2. Analysis 16 2.1. Introduction to the ARM 16 2.2. Identifying the problem 18 2.3. Getting started 20 2.4. The System Design 21 3. Disassembler 23 3.1. Purpose 23 3.2. ARM decoding 23 3.3. Design 24 4. Interpreter 26 4.1. Purpose 26 4.2. The problem with JIT 26 4.3. The HotSpotTM alternative 26 4.4. Quantifying the JIT problem 27 4.5. Faster decoding 28 4.6. Interfaces 29 4.7. The emulation loop 30 4.8. Implementation 31 4.9. Debugging 32 4.10. Compatibility 33 5. Recompilation 35 5.1. Overview 35 5.2. Methods of generating native code 35 5.3. The use of intermediate code 36 6. Armlets – An Intermediate Code 38 6.1. Purpose 38 6.2. The ‘explicit-implicit problem’ 38 6.3. Options 39 6.4.
    [Show full text]
  • A Brief History of Just-In-Time Compilation
    A Brief History of Just-In-Time JOHN AYCOCK University of Calgary Software systems have been using “just-in-time” compilation (JIT) techniques since the 1960s. Broadly, JIT compilation includes any translation performed dynamically, after a program has started execution. We examine the motivation behind JIT compilation and constraints imposed on JIT compilation systems, and present a classification scheme for such systems. This classification emerges as we survey forty years of JIT work, from 1960–2000. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; K.2 [History of Computing]: Software General Terms: Languages, Performance Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation 1. INTRODUCTION into a form that is executable on a target platform. Those who cannot remember the past are con- What is translated? The scope and na- demned to repeat it. ture of programming languages that re- George Santayana, 1863–1952 [Bartlett 1992] quire translation into executable form covers a wide spectrum. Traditional pro- This oft-quoted line is all too applicable gramming languages like Ada, C, and in computer science. Ideas are generated, Java are included, as well as little lan- explored, set aside—only to be reinvented guages [Bentley 1988] such as regular years later. Such is the case with what expressions. is now called “just-in-time” (JIT) or dy- Traditionally, there are two approaches namic compilation, which refers to trans- to translation: compilation and interpreta- lation that occurs after a program begins tion. Compilation translates one language execution. into another—C to assembly language, for Strictly speaking, JIT compilation sys- example—with the implication that the tems (“JIT systems” for short) are com- translated form will be more amenable pletely unnecessary.
    [Show full text]
  • 1 Lecture 25
    I. Goals of This Lecture Lecture 25 • Beyond static compilation • Example of a complete system Dynamic Compilation • Use of data flow techniques in a new context • Experimental approach I. Motivation & Background II. Overview III. Compilation Policy IV. Partial Method Compilation V. Partial Dead Code Elimination VI. Escape Analysis VII. Results “Partial Method Compilation Using Dynamic Profile Information”, John Whaley, OOPSLA 01 (Slide content courtesy of John Whaley & Monica Lam.) Carnegie Mellon Carnegie Mellon Todd C. Mowry 15-745: Dynamic Compilation 1 15-745: Dynamic Compilation 2 Todd C. Mowry Static/Dynamic High-Level/Binary • Compiler: high-level à binary, static • Binary translator: Binary-binary; mostly dynamic • Interpreter: high-level, emulate, dynamic – Run “as-is” – Software migration • Dynamic compilation: high-level à binary, dynamic (x86 à alpha, sun, transmeta; 68000 à powerPC à x86) – machine-independent, dynamic loading – Virtualization (make hardware virtualizable) – cross-module optimization – Dynamic optimization (Dynamo Rio) – specialize program using runtime information – Security (execute out of code in a cache that is “protected”) • without profiling Carnegie Mellon Carnegie Mellon 15-745: Dynamic Compilation 3 Todd C. Mowry 15-745: Dynamic Compilation 4 Todd C. Mowry 1 Closed-world vs. Open-world II. Overview of Dynamic Compilation • Closed-world assumption (most static compilers) • Interpretation/Compilation policy decisions – all code is available a priori for analysis and compilation. – Choosing what and how to compile • Open-world assumption (most dynamic compilers) • Collecting runtime information – code is not available – Instrumentation – arbitrary code can be loaded at run time. – Sampling • Open-world assumption precludes many optimization opportunities. • Exploiting runtime information – Solution: Optimistically assume the best case, but provide a way out – frequently-executed code paths if necessary.
    [Show full text]
  • Dynamic Extension of Typed Functional Languages
    Dynamic Extension of Typed Functional Languages Don Stewart PhD Dissertation School of Computer Science and Engineering University of New South Wales 2010 Supervisor: Assoc. Prof. Manuel M. T. Chakravarty Co-supervisor: Dr. Gabriele Keller Abstract We present a solution to the problem of dynamic extension in statically typed functional languages with type erasure. The presented solution re- tains the benefits of static checking, including type safety, aggressive op- timizations, and native code compilation of components, while allowing extensibility of programs at runtime. Our approach is based on a framework for dynamic extension in a stat- ically typed setting, combining dynamic linking, runtime type checking, first class modules and code hot swapping. We show that this framework is sufficient to allow a broad class of dynamic extension capabilities in any statically typed functional language with type erasure semantics. Uniquely, we employ the full compile-time type system to perform run- time type checking of dynamic components, and emphasize the use of na- tive code extension to ensure that the performance benefits of static typing are retained in a dynamic environment. We also develop the concept of fully dynamic software architectures, where the static core is minimal and all code is hot swappable. Benefits of the approach include hot swappable code and sophisticated application extension via embedded domain specific languages. We instantiate the concepts of the framework via a full implementation in the Haskell programming language: providing rich mechanisms for dy- namic linking, loading, hot swapping, and runtime type checking in Haskell for the first time. We demonstrate the feasibility of this architecture through a number of novel applications: an extensible text editor; a plugin-based network chat bot; a simulator for polymer chemistry; and xmonad, an ex- tensible window manager.
    [Show full text]
  • Comparative Studies of Programming Languages; Course Lecture Notes
    Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
    [Show full text]
  • Bohm2013.Pdf (3.003Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Speeding up Dynamic Compilation Concurrent and Parallel Dynamic Compilation Igor B¨ohm I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Institute of Computing Systems Architecture School of Informatics University of Edinburgh 2013 Abstract The main challenge faced by a dynamic compilation system is to detect and translate frequently executed program regions into highly efficient native code as fast as possible. To efficiently reduce dynamic compilation latency, a dy- namic compilation system must improve its workload throughput, i.e. com- pile more application hotspots per time. As time for dynamic compilation adds to the overall execution time, the dynamic compiler is often decoupled and operates in a separate thread independent from the main execution loop to reduce the overhead of dynamic compilation.
    [Show full text]
  • Language and Compiler Support for Dynamic Code Generation by Massimiliano A
    Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto S.B., Massachusetts Institute of Technology (1995) M.Eng., Massachusetts Institute of Technology (1995) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A u th or ............................................................................ Department of Electrical Engineering and Computer Science June 23, 1999 Certified by...............,. ...*V .,., . .* N . .. .*. *.* . -. *.... M. Frans Kaashoek Associate Pro essor of Electrical Engineering and Computer Science Thesis Supervisor A ccepted by ................ ..... ............ ............................. Arthur C. Smith Chairman, Departmental CommitteA on Graduate Students me 2 Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto Submitted to the Department of Electrical Engineering and Computer Science on June 23, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Dynamic code generation, also called run-time code generation or dynamic compilation, is the cre- ation of executable code for an application while that application is running. Dynamic compilation can significantly improve the performance of software by giving the compiler access to run-time infor- mation that is not available to a traditional static compiler. A well-designed programming interface to dynamic compilation can also simplify the creation of important classes of computer programs. Until recently, however, no system combined efficient dynamic generation of high-performance code with a powerful and portable language interface. This thesis describes a system that meets these requirements, and discusses several applications of dynamic compilation.
    [Show full text]
  • Program Dynamic Analysis Overview
    4/14/16 Program Dynamic Analysis Overview • Dynamic Analysis • JVM & Java Bytecode [2] • A Java bytecode engineering library: ASM [1] 2 1 4/14/16 What is dynamic analysis? [3] • The investigation of the properties of a running software system over one or more executions 3 Has anyone done dynamic analysis? [3] • Loggers • Debuggers • Profilers • … 4 2 4/14/16 Why dynamic analysis? [3] • Gap between run-time structure and code structure in OO programs Trying to understand one [structure] from the other is like trying to understand the dynamism of living ecosystems from the static taxonomy of plants and animals, and vice-versa. -- Erich Gamma et al., Design Patterns 5 Why dynamic analysis? • Collect runtime execution information – Resource usage, execution profiles • Program comprehension – Find bugs in applications, identify hotspots • Program transformation – Optimize or obfuscate programs – Insert debugging or monitoring code – Modify program behaviors on the fly 6 3 4/14/16 How to do dynamic analysis? • Instrumentation – Modify code or runtime to monitor specific components in a system and collect data – Instrumentation approaches • Source code modification • Byte code modification • VM modification • Data analysis 7 A Running Example • Method call instrumentation – Given a program’s source code, how do you modify the code to record which method is called by main() in what order? public class Test { public static void main(String[] args) { if (args.length == 0) return; if (args.length % 2 == 0) printEven(); else printOdd(); } public
    [Show full text]
  • Transparent Dynamic Optimization: the Design and Implementation of Dynamo
    Transparent Dynamic Optimization: The Design and Implementation of Dynamo Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia HP Laboratories Cambridge HPL-1999-78 June, 1999 E-mail: [email protected] dynamic Dynamic optimization refers to the runtime optimization optimization, of a native program binary. This report describes the compiler, design and implementation of Dynamo, a prototype trace selection, dynamic optimizer that is capable of optimizing a native binary translation program binary at runtime. Dynamo is a realistic implementation, not a simulation, that is written entirely in user-level software, and runs on a PA-RISC machine under the HPUX operating system. Dynamo does not depend on any special programming language, compiler, operating system or hardware support. Contrary to intuition, we demonstrate that it is possible to use a piece of software to improve the performance of a native, statically optimized program binary, while it is executing. Dynamo not only speeds up real application programs, its performance improvement is often quite significant. For example, the performance of many +O2 optimized SPECint95 binaries running under Dynamo is comparable to the performance of their +O4 optimized version running without Dynamo. Internal Accession Date Only Ó Copyright Hewlett-Packard Company 1999 Contents 1 INTRODUCTION ........................................................................................... 7 2 RELATED WORK ......................................................................................... 9 3 OVERVIEW
    [Show full text]
  • Infrastructures and Compilation Strategies for the Performance of Computing Systems Erven Rohou
    Infrastructures and Compilation Strategies for the Performance of Computing Systems Erven Rohou To cite this version: Erven Rohou. Infrastructures and Compilation Strategies for the Performance of Computing Systems. Other [cs.OH]. Universit´ede Rennes 1, 2015. <tel-01237164> HAL Id: tel-01237164 https://hal.inria.fr/tel-01237164 Submitted on 2 Dec 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License HABILITATION À DIRIGER DES RECHERCHES présentée devant L’Université de Rennes 1 Spécialité : informatique par Erven Rohou Infrastructures and Compilation Strategies for the Performance of Computing Systems soutenue le 2 novembre 2015 devant le jury composé de : Mme Corinne Ancourt Rapporteur Prof. Stefano Crespi Reghizzi Rapporteur Prof. Frédéric Pétrot Rapporteur Prof. Cédric Bastoul Examinateur Prof. Olivier Sentieys Président M. André Seznec Examinateur Contents 1 Introduction 3 1.1 Evolution of Hardware . .3 1.1.1 Traditional Evolution . .4 1.1.2 Multicore Era . .4 1.1.3 Amdahl’s Law . .5 1.1.4 Foreseeable Future Architectures . .6 1.1.5 Extremely Complex Micro-architectures . .6 1.2 Evolution of Software Ecosystem .
    [Show full text]