Rowe IS05034.Qxd

Total Page:16

File Type:pdf, Size:1020Kb

Rowe IS05034.Qxd CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2006, 20, 527–556 Morphological and systematic study of the tribe Australiosomatini (Diplopoda:Polydesmida:Paradoxosomatidea:Paradoxosomatidae) and a revision of the genus Australiosoma Brölemann Melissah RoweA,C and Petra SierwaldB ADepartment of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA. BZoology, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA. CCorresponding author. Email: [email protected] Abstract. The collection of several paradoxosomatid species in the context of ecological studies prompted an investigation into the morphology and species-level characteristics of Australian millipedes in the tribe Australiosomatini Brölemann, 1916 (Polydesmida:Paradoxosomatidae). Three new species are described: Akamptogonus caragoon, sp. nov., Australiosoma fulbrighti, sp. nov. and Australiosoma combei, sp. nov. Notes or re-descriptions are provided for nine additional species belonging to the tribe. Scanning electron microscopy was utilised to examine details of the antennal sensory fields, the fifth sternite lamella and associated pores. The presence of the fifth sternite lamella in adult males is considered a synapomorphy for the family Paradoxosomatidae, whereas the prominent tubercle on the first femur in males (adenostyle) represents a synapomorphy of the subfamily Australiosomatinae. With the description of two new species in the genus Australiosoma Brölemann, 1913 a revision of the genus was undertaken with the purpose of constructing a species- level phylogeny. The most commonly described and utilised species-specific characteristics were scored in a data matrix and analysed using PAUP. The analysis resulted in a single, fully resolved tree of the following structure: Hoplatria clavigera ((A. clavigerum, A. inusitatum) (((A. rainbowi, A. nodulosum) A. michelseni) (A. laminatum (A. combei, A. fulbrighti))). Additional keywords: Australia, millipede. Introduction Systematic history of the subfamily Australiosomatinae The millipede family Paradoxosomatidae Daday, 1889, with Brölemann (1913) first described the genus Australiosoma ~142 genera and more than 560 described species, the (placed in the Polydesmoidea Pocock, 1894) based on the type largest family of the Diplopoda (Hoffman 1980, 1982), has species A. rainbowi Brölemann, 1913, and included a total of a recorded natural range covering all continents excluding five species in this taxon. The group was split into two sub- North America and Antarctica. Currently the family is genera based upon the number of gonopod branches (two organised into three subfamilies (Jeekel 1968: fig. 1; branches in the subgenus Dicladosoma Brölemann, 1913 and Hoffman 1980, 1999), two of which are known from three branches in Australiosoma sensu stricto). Brölemann Australia, the Paradoxosomatinae Daday, 1889 and (1916) argued that the endemic Australian Paradoxosomatidae Australiosomatinae Brölemann, 1916. All known endemic are distinct from those of other countries, implying that they Australian Paradoxosomatidae are contained within the sub- form a monophyletic group, and arranged these species into family Australiosomatinae. Although some species from the two tribes, the Australiosomatini (as Australiosomini) and subfamily Paradoxosomatinae have successfully invaded Antichiropodini (as Antichiropini). At that time, the glasshouses worldwide, e.g. Oxidus gracilis C. L. Koch, Australiosomatini (Brölemann, 1916: 540) contained the 1847, no species from this subfamily are known to be genera Australiosoma and Helicorhabdosoma Brölemann, endemic to Australia. Members of two tribes in the sub- 1916 (now Helicorthomorpha Attems, 1914) and the family Australiosomatinae, the Australiosomatini and Antichiropodini contained the genera Antichiropus Attems, Antichiropodini Brölemann, 1916, are distributed through- 1911 and Haplogonosoma Brölemann, 1916 (Brölemann out Australia, including Tasmania, with some 94 nominal 1916: 539). Attems (1914: 186, couplet 9 in the key; 1929: species assigned to 36 genera (Australiosomatini 20 genera; 262) recognised that the Australian paradoxosomatid genera Antichiropodini 16 genera). can be separated from other paradoxosomatids by the adeno- © CSIRO 2006 10.1071/IS05034 1445-5226/06/050527 528 Invertebrate Systematics M. Rowe and P. Sierwald style (a tubercle, see Fig. 13) on the femur of the first leg in solenomere of medium length. The Antichiropodini were males. Verhoeff (1924: 13, 1928a: 1601, 1941: 5) noted that distinguished by a reduced or absent tibiotarsus, a long the femoral adenostyle on the first leg pair of males occurs in femorite and a very long solenomere. Jeekel (1968) subdi- all then known genera of the Australiosomini and vided the Australiosomatini into five groups based on Antichiropodini. He characterised the Australiosomatini (as gonopod characters, such as the number of branches and Australiosominae) by the free strong solenomere and the their relative lengths and positions (see Jeekel 1968: fig. 1). strongly developed tibiotarsus. Jeekel (1964: 108) noted that Jeekel hypothesised about the primitive condition of the the adenostyle is also present in Dendrogonopus Jeekel, 1964 gonopods in Australiosomatini, including the reductive ten- and thus also occurs in the third tribe of the subfamily dencies of the femorite, the enlargement of the femoral Australiosomatinae, tribe Aschistodesmini (Fig. 1). process and bifurcation of the tibiotarsus. Jeekel (1968), following Brölemann and Verhoeff, sepa- Currently, the Australiosomatini are characterised by the rated the tribes employing the following characters: following combination of characters: a short or somewhat Australiosomatini: tibiotarsus present, femorite short, elongate gonopod prefemur, thick and rather short to almost Australiosomatini Australia Australiosomatinae Australia P Antichiropodini a Aschistodesmini New Guinea r a Alogolykinae Alogolykini Myanmar, China d o Polydrepanini India x o s Eviulisomatini Africa o Eroonsomatini Italy, Yugoslavia m Graphisternini Peru a Eustrongylosomatini New Guinea, Philippines t Cnemodesmini Africa i Sulciferini Indochina d Orthomorphini (incl. ‘Hylomini’) SE Asia a Paradoxosomatinae Strongylosomatini Golovatch 1984 India e Chamberlinini Taiwan Tectoporini SE Asia Tonkinosomatini Indochina Nedyopodini SE Asia Sundanini mainly Indonesia Xanthodesmini Pakistan, Africa Paradoxosomatini Europe, middle East Catharosomatini South America Fig. 1. Proposed relationships within the family Paradoxosomatidae, from Jeekel (1968) and Hoffman (1980), modified to incorporate classification changes by Golovatch (1984) and Golovatch and Enghoff (1994). Australian Paradoxosomatidae Invertebrate Systematics 529 entirely absent femorite and a strongly developed Materials and methods solenomere (Jeekel 1968, 1987). In many genera, the Specimens examined included millipedes collected during ecological gonopod femorite is provided with a strong femoral process studies and type material borrowed from museums. Material was not arising from the anterior side of the femorite. In addition to obtained by sorting though the extensive backlog at various Australian these gonopod features, the paranota are moderately devel- institutions (see Sierwald and Reft 2004); such a task was outside the scope of this study. Millipedes were hand-collected in the Sydney Basin oped. The various distinguishing characters employed by region during May 2000. Collection times were synchronised with previous authors demonstrate that the Australiosomatini are observed peak activity periods of 06:00 hours to 12:00 hours, with most not defined by unequivocal apomorphies. success on overcast days or during light rain. Specimens were located Representatives of the tribe have been collected from all in leaf litter, fallen logs and on trees during random walk searches. regions within Australia, with most attention to the Specimens were euthanised by cooling and then preserved in 70% Queensland (Jeekel 1987) and South Australian (Jeekel ethanol in glass vials of appropriate size, cotton plugged and placed in parfait jars filled with 70% ethanol. 1985) fauna. The tribe currently includes 20 genera and Specimens were examined using light and scanning electron 56 species (the number of species for each genus are listed microscopy (SEM). Scanning electron micrographs of the gonopods below in italics): Akamptogonus Attems, 1914, 1; Archi- did not reveal features, such as setae or pores, that were not already cladosoma Jeekel, 1984, 1; Australiosoma Brölemann, 1913, observed using light microscopy. However, the SEM image imparts a 6; Boreohesperus Shear, 1992, 1; Cladethosoma three-dimensional view of the structures, whereas the line drawings indicate overlaying structures. Additional characteristics explored in Chamberlin, 1920, 7; Dicladosoma Brölemann, 1913, 1; the current study include the cuticle structure, spiracles, gnathochilar- Dicladosomella Jeekel, 1982, 1; Gigantowales Verhoeff, ium, antennae, epiproct and in males, the lamella on the fifth sternite, 1937, 2; Heterocladosoma Jeekel, 1968, 7; Hoplatessara the gonopore and legs. Gonopods were dissected and drawn with the aid Verhoeff, 1928, 8; Hoplatria Verhoeff, 1941, 1; Isoclado- of a Leica MZ12 microscope and a camera lucida. Pencil drawings were soma Jeekel, 1984, 3; Myallosoma Verhoeff, 1928, 2; Onco- digitised using Adobe Illustrator. Specimen samples for electron microscopy were
Recommended publications
  • Diplopoda: Polydesmida)
    Records of the Hawaii Biological Survey for 1997—Part 2: Notes 43 P-0244 HAWAI‘I: East slope of Mauna Loa, Kïpuka Ki Weather Station, 1220 m, pitfall trap, 10–12.iv.1972, J. Jacobi P-0257 HAWAI‘I: East slope of Mauna Loa, 1280–1341 m, pitfall trap, 8–10.v.1972, J. Jacobi P-0268 HAWAI‘I: East slope of Mauna Loa, 1890 m, pitfall trap, 5–7.vi.1972, J. Jacobi P-0269 HAWAI‘I: East slope of Mauna Loa, 1585 m, pitfall trap, 5–7.vi.1972, J. Jacobi P-0271 HAWAI‘I: East slope of Mauna Loa, 1280–1341 m, pitfall trap, 5–7.vi.1972, J. Jacobi P-0281 HAWAI‘I: East slope of Mauna Loa, 1981 m, pitfall trap, 10–12.vii.1972, J. Jacobi P-0284 HAWAI‘I: East slope of Mauna Loa, 1585 m, pitfall trap, 10–12.vii.1972, J. Jacobi P-0286 HAWAI‘I: East slope of Mauna Loa, Kïpuka Ki Weather Station, 1220 m, pitfall trap, 10–12.vii.1971, J. Jacobi P-0291 HAWAI‘I: East slope of Mauna Loa, Kilauea Forest Reserve, 1646 m, pitfall trap, 10–12.vii.1972 J. Jacobi P-0294 HAWAI‘I: East slope of Mauna Loa, 1981 m, pitfall trap, 14–16.viii.1972, J. Jacobi P-0300 HAWAI‘I: East slope of Mauna Loa, Kilauea Forest Reserve, 1646 m, pitfall trap, J. Jacobi P-0307 HAWAI‘I: East slope of Mauna Loa, 1981 m, pitfall trap, 17–19.ix.1972, J. Jacobi P-0313 HAWAI‘I: East slope of Mauna Loa, Kilauea Forest Reserve, 1646 m, pitfall trap, 17–19.x.1972, J.
    [Show full text]
  • The Short-Range Endemic Invertebrate Fauna of the Ravensthorpe Range
    THE SHORT-RANGE ENDEMIC INVERTEBRATE FAUNA OF THE RAVENSTHORPE RANGE MARK S. HARVEY MEI CHEN LENG Department of Terrestrial Zoology Western Australian Museum June 2008 2 Executive Summary An intensive survey of short-range endemic invertebrates in the Ravensthorpe Range at 79 sites revealed a small but significant fauna of myriapods and arachnids. Four species of short-range endemic invertebrates were found: • The millipede Antichiropus sp. R • The millipede Atelomastix sp. C • The millipede Atelomastix sp. P • The pseudoscorpion Amblyolpium sp. “WA1” Atelomastix sp. C is the only species found to be endemic to the Ravensthorpe Range and was found at 14 sites. Antichiropus sp. R, Atelomastix sp. P and Amblyolpium sp. “WA1” are also found at nearby locations. Sites of high importance include: site 40 with 7 species; sites 7 and 48 each with 5 species; and sites 18 and 44 each with 4 species. WA Museum - Ravensthorpe Range Survey 3 Introduction Australia contains a multitude of terrestrial invertebrate fauna species, with many yet to be discovered and described. Arthropods alone were recently estimated to consist of approximately more than 250,000 species (Yeates et al. 2004). The majority of these belong to the arthropod classes Insecta and Arachnida, and although many have relatively wide distributions across the landscape, some are highly restricted in range with special ecological requirements. These taxa, termed short-range endemics (Harvey 2002b), are taxa categorised as having poor dispersal abilities and/or requiring very specific habitats, usually with naturally small distributional ranges of less than 10,000 km2 and the following ecological and life-history traits: • poor powers of dispersal; • confinement to discontinuous habitats; • usually highly seasonal, only active during cooler, wetter periods; and • low levels of fecundity.
    [Show full text]
  • Diplopoda, Polydesmida, Paradoxosomatidae) Indicates Multiple Glacial Refugia in Southeastern Australia
    A peer-reviewed open-access journal ZooKeys 578:Phylogenetic 15–31 (2016) analysis of the Australian trans-Bass Strait millipede genus Pogonosternum... 15 doi: 10.3897/zookeys.578.8052 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic analysis of the Australian trans-Bass Strait millipede genus Pogonosternum (Carl, 1912) (Diplopoda, Polydesmida, Paradoxosomatidae) indicates multiple glacial refugia in southeastern Australia Peter Decker1 1 Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany Corresponding author: Peter Decker ([email protected]) Academic editor: R. Mesibov | Received 5 February 2016 | Accepted 10 March 2016 | Published 7 April 2016 http://zoobank.org/B5513E69-0DED-4608-98BD-7ECD401B29E3 Citation: Decker P (2016) Phylogenetic analysis of the Australian trans-Bass Strait millipede genus Pogonosternum (Carl, 1912) (Diplopoda, Polydesmida, Paradoxosomatidae) indicates multiple glacial refugia in southeastern Australia. ZooKeys 578: 15–31. doi: 10.3897/zookeys.578.8052 Abstract This study documents the first detailed phylogenetic analysis of an Australian paradoxosomatid millipede genus. Two mitochondrial genes (partial COI and 16S) as well as partial nuclear 28S rDNA were ampli- fied and sequenced for 41 individuals of the southeastern Australian genus Pogonosternum Jeekel, 1965. The analysis indicates that five species groups ofPogonosternum occur across New South Wales, Victoria and Tasmania: P. nigrovirgatum (Carl, 1912), P. adrianae Jeekel, 1982, P. laetificum Jeekel, 1982 and two undescribed species. P. coniferum (Jeekel, 1965) specimens cluster within P. nigrovirgatum. Most of these five species groups exhibit a pattern of high intraspecific genetic variability and highly local- ized haplotypes, suggesting that they were confined to multiple Pleistocene refugia on the southeastern Australian mainland.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • 'Marri Millipede' Antichiropus Variabilis
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 26 087–093 (2010) Optimised captive husbandry conditions for the Western Australian ‘Marri Millipede’ Antichiropus variabilis (Diplopoda: Polydesmida: Paradoxosomatidae), with notes on natural history and tissue preservation techniques Janine M. Wojcieszek1, Mark S. Harvey2,1 and Michael G. Rix2 1Centre for Evolutionary Biology, School of Animal Biology M092, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia. Email: [email protected] 2Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool D.C., Perth, Western Australia 6986, Australia. ABSTRACT – The millipede genus Antichiropus Attems, 1911, is extremely diverse and the majority of species are endemic to south-western Western Australia. Very little is known about the general biology of species of Antichiropus; however, these millipedes are becoming useful models for studies of speciation and sexual selection, and remain central to SRE-based conservation planning for government and industry in the expanding resources sector of Western Australia. This paper details optimised captive husbandry conditions and observations made regarding the natural history of one species – Antichiropus variabilis – following three years of fi eld collecting and laboratory-based behavioural and molecular research. INTRODUCTION found in Marri (Corymbia calophylla) and Jarrah (Eucalyptus marginata) forests along much of the The genus Antichiropus is an extremely diverse Darling Escarpment east of Perth (Harvey 2002) (Figure group of largely short-range endemic (SRE) millipedes 2). Recent research investigating sexual selection (Harvey 2002), occurring in south-western Western in A. variabilis required the development of captive Australia and western South Australia (Harvey and husbandry procedures for laboratory experiments, and Mesibov 2007).
    [Show full text]
  • Mating Pattern, Duration and Multiple Mating in Chondromorpha Severini Silvestri (Diplopoda: Polydesmida)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263863; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mating pattern, duration and multiple mating in Chondromorpha severini Silvestri (Diplopoda: Polydesmida). S. Bhakat Rampurhat College, Rampurhat- 731224, Dist. Birbhum, W. B. India E-mail: [email protected] ORCID: 0000-0002-4926-2496 Abstract Mating behaviour of Chondromorpha severini, a polydesmid millipede was studied in the field and in the laboratory condition. Copulating pair follows the general rule of love play before actual act of coitus. Mating duration varied from one to 25 minute with an average of eight minute. Mating frequency was maximum in early and late hours of day. In the multiple mate preference experiment, 10 pairs of male and female were used to calculate preference index (Pi) of individual sex. Preference index varies from 0.65 to 0.91. The implication of multiple mating has been discussed in detail. The study confirmed that i) the species belongs to polygynandrous mating system where males are the pursuers and females are the accomplishers ii) short and long duration mating is related to mate acquisition and mate guarding respectively Keywords: Love play, preference index, polygynandrous, short and long duration mating, triplet formation bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263863; this version posted August 24, 2020.
    [Show full text]
  • Genetic Diversity of Populations of a Southern African Millipede, Bicoxidens Flavicollis (Diplopoda, Spirostreptida, Spirostreptidae)
    Genetic diversity of populations of a Southern African millipede, Bicoxidens flavicollis (Diplopoda, Spirostreptida, Spirostreptidae) by Yevette Gounden 212502571 Submitted in fulfillment of the academic requirements for the degree of Master of Science (Genetics) School of Life Sciences, University of KwaZulu-Natal Westville campus November 2018 As the candidate’s supervisor I have/have not approved this thesis/dissertation for submission. Signed: _____________ Name: _____________ Date: _____________ ABSTRACT The African millipede genus Bicoxidens is endemic to Southern Africa, inhabiting a variety of regions ranging from woodlands to forests. Nine species are known within the genus but Bicoxidens flavicollis is the most dominant and wide spread species found across Zimbabwe. Bicoxidens flavicollis individuals have been found to express phenotypic variation in several morphological traits. The most commonly observed body colours are brown and black. In the Eastern Highlands of Zimbabwe body colour ranges from orange- yellow to black, individuals from North East of Harare have a green-black appearance and a range in size (75–110 mm). There is disparity in body size which has been noted with individuals ranging from medium to large and displaying variation in the number of body rings. Although much morphological variation has been observed within this species, characterization based on gonopod morphology alone cannot distinguish or define variation between phenotypically distinct individuals. Morphological classification has been found to be too inclusive and hiding significant genetic variation. Taxa must be re-assessed with the implementation of DNA molecular methods to identify the variation between individuals. This study aimed to detect genetic divergence of B. flavicollis due to isolation by distance of populations across Zimbabwe.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • Urban Millipedes in Singapore Authors: Trudy Maria Tertilt and Peter Decker Edited by James Wang
    Research Technical Note RTN Urban Ecology Series 11-2 012 Urban millipedes in Singapore Authors: Trudy Maria Tertilt and Peter Decker Edited by James Wang Introduction Millipedes are ground-dwelling invertebrates which are a common sight in urban parks and gar- dens worldwide. In recent years, populations of black and yellow millipedes have proliferated in a few locations in Singapore. These often reach high densities, and have become a management concern for horticulturalists in some localities. However, there is a general lack of understanding locally regarding what species these are, what factors drive their population increase, and how they should be managed. This article introduces basic aspects of millipede biology and ecology, identifies some common urban millipedes found in Singapore, and presents some preliminary hypotheses on how their populations could be controlled. What are millipedes? Millipedes (Diplopoda) are distributed almost all over the world, from the polar regions to the rain forests, and even up to the fringes of deserts. About 80, 000 species of millipedes are thought to exist worldwide; so far about 11, 000 species are already known to science. About 32 species are currently known from Singapore. Millipedes have a rigid calcareous exoskeleton, are often cylin- drical in form, and have two pairs of legs on each of the trunk-segments. They have many legs, as the name suggests, ranging from 26 to 750 in total. Millipedes belong to the same phylum (Myri- apoda) as Centipedes (Chilopoda), and inhabit the same dark, damp habitats. However, these two groups of organisms are distinct from each other. The latter display more active movement patterns than millipedes, have poison-claws, and only one pair of legs on each trunk-segment.
    [Show full text]
  • Sexual Behaviour and Morphological Variation in the Millipede Megaphyllum Bosniense (Verhoeff, 1897)
    Contributions to Zoology, 87 (3) 133-148 (2018) Sexual behaviour and morphological variation in the millipede Megaphyllum bosniense (Verhoeff, 1897) Vukica Vujić1, 2, Bojan Ilić1, Zvezdana Jovanović1, Sofija Pavković-Lučić1, Sara Selaković1, Vladimir Tomić1, Luka Lučić1 1 University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia 2 E-mail: [email protected] Keywords: copulation duration, Diplopoda, mating success, morphological traits, sexual behaviour, traditional and geometric morphometrics Abstract Analyses of morphological traits in M. bosniense ..........137 Discussion .............................................................................138 Sexual selection can be a major driving force that favours Morphological variation of antennae and legs morphological evolution at the intraspecific level. According between sexes with different mating status ......................143 to the sexual selection theory, morphological variation may Morphological variation of the head between sexes accompany non-random mating or fertilization. Here both with different mating status .............................................144 variation of linear measurements and variation in the shape Morphological variation of gonopods (promeres of certain structures can significantly influence mate choice in and opisthomeres) between males with different different organisms. In the present work, we quantified sexual mating status ....................................................................144 behaviour of the
    [Show full text]
  • Appendix C-10 Invert Solutions SRE Report 2020.Pdf (PDF
    Survey for Short Range Endemic Fauna for the MRC Graphite Project, Munglinup, Western Australia. Report by Invertebrate Solutions Pty Ltd for MRCG Graphite Ltd October 2020 Dr Timothy Moulds Director and Principal Ecologist Invertebrate Solutions Pty Ltd PO Box 14 Victoria Park, WA 6979 Australia [email protected] www.invertebratesolutions.com Invertebrate Solutions. (2020). Survey for Short Range Endemic Fauna for the MRC Graphite Project, Munglinup, Western Australia. Unpublished report to MRC Graphite Ltd, October 2020. Report Number 2019ISJ08_F04_20201020 Prepared for: MRC Graphite Ltd Frontispiece: Mygalomorph spider Aname sp.’munglinup-DNA’ disturbed from her burrow Image Copyright Invertebrate Solutions 2020. COPYRIGHT: This document has been prepared to the requirements of the client identified above, and no representation is made to any third party. Copyright and any other Intellectual Property associated with the document belongs to Invertebrate Solutions and may not be reproduced without written permission of the Client or Invertebrate Solutions. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Invertebrate Solutions. Table of Contents Executive Summary ................................................................................................................................ vi 1. Introduction .......................................................................................................................
    [Show full text]
  • Revision of the Australian Millipede Genus Pogonosternum Jeekel
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2016 Band/Volume: 0254 Autor(en)/Author(s): Decker Peter, Mesibov Robert, Voigtländer Karin, Xylander Willi E. R. Artikel/Article: Revision of the Australian millipede genus Pogonosternum Jeekel, 1965, with descriptions of two new species (Diplopoda, Polydesmida, Paradoxosomatidae) 1-34 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 259: 1–34 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.259 www.europeanjournaloftaxonomy.eu 2017 · Decker P. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:DCD1D671-B95C-4E10-8BC5-2352F25C0D1E Revision of the Australian millipede genus Pogonosternum Jeekel, 1965, with descriptions of two new species (Diplopoda, Polydesmida, Paradoxosomatidae) Peter DECKER 1,*, Robert MESIBOV 2, Karin VOIGTLÄNDER 3 & Willi E.R. XYLANDER 4 1,3,4 Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany 2 Queen Victoria Museum and Art Gallery, 2 Invermay Road, Launceston, Tasmania 7248, Australia * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:67EAB8FA-C93C-4F50-9F3F-A22735014D6F 2 urn:lsid:zoobank.org:author:24BA85AE-1266-494F-9DE5-EEF3C9815269 3 urn:lsid:zoobank.org:author:6F708F5C-12D6-4B64-8B4D-76F821C79C21 4 urn:lsid:zoobank.org:author:C2567283-03A8-4B0B-A2C1-C66226416686 Abstract. The southeastern Australian millipede genus Pogonosternum Jeekel, 1965 is revised.
    [Show full text]