Machine Learning for Load Balancing in the Linux Kernel Jingde Chen Subho S. Banerjee
[email protected] [email protected] University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Zbigniew T. Kalbarczyk Ravishankar K. Iyer
[email protected] [email protected] University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Abstract ACM Reference Format: The OS load balancing algorithm governs the performance Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Rav- gains provided by a multiprocessor computer system. The ishankar K. Iyer. 2020. Machine Learning for Load Balancing in Linux’s Completely Fair Scheduler (CFS) scheduler tracks the Linux Kernel. In 11th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’20), August 24–25, 2020, Tsukuba, Japan. ACM, New process loads by average CPU utilization to balance work- York, NY, USA, 8 pages. https://doi.org/10.1145/3409963.3410492 load between processor cores. That approach maximizes the utilization of processing time but overlooks the con- tention for lower-level hardware resources. In servers run- 1 Introduction ning compute-intensive workloads, an imbalanced need for The Linux scheduler, called the Completely Fair Scheduler limited computing resources hinders execution performance. (CFS) algorithm, enforces a fair scheduling policy that aims to This paper solves the above problem using a machine learn- allow all tasks to be executed with a fair quota of processing ing (ML)-based resource-aware load balancer. We describe time. CFS allocates CPU time appropriately among the avail- (1) low-overhead methods for collecting training data; (2) an able hardware threads to allow processes to make forward ML model based on a multi-layer perceptron model that imi- progress.