Research Commons at the University of Waikato Copyright Statement

Total Page:16

File Type:pdf, Size:1020Kb

Research Commons at the University of Waikato Copyright Statement http://waikato.researchgateway.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Ecological, genetic and cultural status of Solanum aviculare, poroporo (Solanaceae) A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by GRAEME MORRIS WEAVERS 2010 Abstract Solanum aviculare, endemic to Australasia, is an opportunist pioneer secondary successional plant occupying disturbed and open lowland habitats, and was an important medicinal and cultural species to Māori known as poroporo. It is currently in „decline‟, the ecological decline appearing to correspond to a decline in knowledge and cultural use of the species. To gain understanding of the reasons for the decline, enhance ecological knowledge, assist conservation and cultural restoration of Solanum aviculare this research documented the successional role and cycle of regeneration dynamics and tactics, established morphological characteristics, investigated the genetic diversity and recorded cultural and conservation information. The successional status and role was identified. Growth data identified cohort development and inter-site differences, metadata found height and crown spread growth to be significantly correlated and likely part of an early reproduction and dispersal strategy. Germination of soil cores from differing depths confirmed a viable seed bank exists sufficient for species maintenance. Viable seed spread via animal gut passage was determined by germination and chemical tests, results showed rats passed higher rates of viable seed than birds. Seed germination trials with stratified and fresh seed confirmed temporal and depth behaviour, flowering observation documented temporal differences with the closely allied species Solanum laciniatum, indicating a relationship to stasis induction. Leaf morphology studies documented differences between the two allied species and proposed further nomenclature. Genetic diversity was investigated through the use of PCR/ISSR techniques. Chloroplast DNA was extracted by CTAB and DNA kit protocols. CTAB extraction was unable to effectively remove RNA, although use of DNA samples with high quantities of RNA confirmed that RNA was not an inhibiting factor in PCR production. The production of consistent reliable ISSR bands proved difficult, with no technical explanation found. ISSR findings indicate that Solanum aviculare is highly monomorphic, consisting of predominant invariant monomorphic loci. Twenty primers were tested with no polymorphic loci ii identified and no intra species variation documented. Indications were also that Solanum aviculare and Solanum laciniatum are inter species invariant on monomorphic loci. Monomorphic loci may possibly be the evolutionary markers of generic differentiation within Solanum. Surveys identified Solanum aviculare as uncommon and rare, existing mainly as single plants or small groups in the majority of areas surveyed. The Threatened and Uncommon Plant listing of Solanum aviculare as an „at risk declining‟ species is confirmed and a further Recommendation category proposed. Ecological decline and corresponding decline in cultural use and knowledge of Solanum aviculare was identified through specialist interviews; appearing to be related to removal from Māori of control over their land. The name poroporo being now associated mainly with non indigenous Solanum species. Māori cultural concepts in practice were highlighted as fundamentally important to reversing the decline, with an example of a successful traditional practice based (tikanga) integrative collaborative restoration program being documented. This research forwards that optimal collaborative solutions, programs integrating scientific and tikanga knowledge and practices, provide the best opportunity of reversing the declining trend and for increasing and maintaining knowledge associated with the traditional role of poroporo. iii Acknowledgements Help and expertise from others prior to and throughout the production of this thesis has been instrumental in its successful completion. Therefore I would like to acknowledge all those that have contributed to my undertaking and completing this research. Prior to enrolling at the University of Waikato I completed a Bachelor‟s at Te Whare Wananga o Awanuiarangi. The high quality of education and the infectious enthusiasm of the tutors and lecturers enabled and encouraged me to consider moving further academically into graduate research. In particular I would like to heart fully thank Brett Stephenson for his teaching professionalism, unfailing enthusiasm and confidence he displayed toward a „you can do it‟ attitude; Mere Roberts without whom I would not have been able to see the „light‟ and a future in graduate ecology; Reuban Cohen whose unflinching perseverance with me and my „difficult‟ relationship with mathematics and statistics bordered on the superhuman; Daniel (Dr. Dan the man) Hikuroa whose passion for earth science overflowed into all ecology, Ronnie Mc Hale who was able to instil in me an understanding of chemistry despite my profound ignorance and Mick Kearney who along with Craig Bishop, by shaping our second and third year assignments along that expected of graduate work, gradually opened my eyes to the possibility of what was possible to achieve. The collection of growth data in the Tarawera sites commenced in February/March 2008, much earlier than the normal research start date. This was undertaken due to the available and willing help from fellow Awanuiarangi students, and which proved to be fortuitous as >95% of the plants under study senesced during the winter. Therefore it would not have been possible to complete much of my growth dynamic data without the enormously generous help and encouragement from my friends and fellow „ecology peeps‟ Jean McCauley, Keriana Te Rire and Tracey Godfery. To Mieke Kapa who proved it could be done and was wonderfully encouraging that I could do it too, and whose peer reviewing of my chapters made me look a much better writer than I am: thanks so much. iv Derek and Kerry Gosling (thanks for putting up with me Kerry), without your patient help, expertise and guidance over the years, and in particular the generous use of your facilities for my seed germination experiments, I would not have been where I am today. Derek your wisdom passed on throughout all those long discussions may be starting to pay off! All of those who gave freely of their time and knowledge in my surveys, interviews and associated discussions, a heartfelt thanks for giving me your time, expertise and permission to use your information. I could not have successfully completed my work to the standard it is without your generous help. Des Heke- Kaiawha, thanks mate for being on the bus, and connecting me up to your whanau and aunty Debbie. To Peho Tamiana thanks for the weekend up the valley. That connection was long overdue and goes back a long way! Awesome, what a buzz you are Moana‟s uncle! To my dad Te Rake, mum Hine and all my sisters who have put up with me very patiently over the years. Awesome, it‟s worth getting old when you‟ve got good ones! Barry Snedden from Te Papa thanks for your patient help in allowing me to view Solander‟s journals and the information relating to your work on S. nodiflorum. To David Symon from Adelaide thank you so much for your generous help, advice and for sending me the translations and books. Peter Pozcai thanks for your generous help and advice to a fellow Archaesolanum nut! Māori Investments whose kind and generous help in issuing me with entry permits for the duration of my research was invaluable. All the DOC staff who helped me in my organisation, especially Paul Cashmore without whose help I would not have been able to collect anything and Gareth Boyt who generously helped me to access Ohutu, showed me plants I‟d never seen and how to avoid Urtica!! The Freemason‟s, Forest and Bird (Waikato) Valder Grant, Whakatane Historic Society and FRST Te Tipu Putaiao, all of whose extremely generous financial help was the key that allowed me to complete my research and writing. The staff of the library at Waikato University thanks for the inter-loans, and in particular Cheryl Ward whose guides to thesis formatting and always generous help enabled a computer illiterate to complete his writing to such a high standard. The staff of the Biological Sciences administration Gloria Edwards, Gillian v Dufty and Vicki Smith thanks for everything. The help and advice was always so generously given. The staff of the Scholarships office without whose help it would have been so much harder to have got the scholarship stuff right. Carol Robinson, especially, whose meticulous accounting and following up of my summer and FRST scholarships reduced stress enormously. To the University staff that saw something in my work that was worthy of financial support in Masters Fees, Masters Research and Summer Scholarship my heartfelt thanks. Without the support of the University I most likely would not have been able to complete this thesis. I miss my on campus time and fellow students! Thanks to Toni Cornes for all your help. Thanks to Stacey Foster, for without your generous help with the rats I could not have got the data I needed. A special thanks to Arvina Ram without whose most patient and generous help I would still be struggling with extractions and Fiona Clarkson who gave most generously and patiently of her time to help me get going with PCR.
Recommended publications
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Solasodine Production from Solanum Laciniatum in the South Island of New Zealand
    SOLASODINE PRODUCTION FROM SOLANUM LACINIATUM IN THE SOUTH ISLAND OF NEW ZEALAND D. J. G. Davies and J. D. Mann Crop Research Division and Applied Biochemistry Division DSIR, Lincoln, Canterbury ABSTRACT This paper reviews agronomic studies on the production of solasodine-containing leaves from Solanum laciniatum grown as an annual crop in the South Island. The best yields were below 200 kg ha-I of solasodine, and well below commercial feasibility. INTRODUCTION Solasodine, a steroidal alkaloid valuable to the irrigations that are necessary' stimulate weed growth. pharmaceutical industry, can be extracted from the Trifluralin (2 1 ha- 1 ) was routinely incorporated by leaves of Solanum aviculare and S. laciniatum, as well discing before direct sowing, but a pre-emergence as from the fruits of these and numerous other follow-up spray with paraquat or diquat was also species of Solanum. The feasibility of using leaves for found to be necessary. Timing the latter spray was commercial extraction from S. laciniatum, on an difficult because of the prolonged germination period annual basis, is uncertain. of untreated Solanum seed. For transplants, This paper summarises four years of research on metribuzin (0.5 kg ha-1 ) applied before planting gave the production of solasodine from S. laciniatum satisfactory weed control (Betts, 1975). (poroporo) in the South Island of New Zealand. The problems of establishment (including planting time, Climatic requirements method, and density), fertilisation, harvt;sting and S. laciniatum grows well in coastal regions that are drying are covered; details of the extraction and relatively frostfree and have a uniformly distributed chemical modification of solasodine are being rainfall.
    [Show full text]
  • Rodondo Island
    BIODIVERSITY & OIL SPILL RESPONSE SURVEY January 2015 NATURE CONSERVATION REPORT SERIES 15/04 RODONDO ISLAND BASS STRAIT NATURAL AND CULTURAL HERITAGE DIVISION DEPARTMENT OF PRIMARY INDUSTRIES, PARKS, WATER AND ENVIRONMENT RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 RODONDO ISLAND BASS STRAIT Biodiversity & Oil Spill Response Survey, January 2015 NATURE CONSERVATION REPORT SERIES 15/04 Natural and Cultural Heritage Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment ISBN: 978-1-74380-006-5 (Electronic publication only) ISSN: 1838-7403 Cite as: Carlyon, K., Visoiu, M., Hawkins, C., Richards, K. and Alderman, R. (2015) Rodondo Island, Bass Strait: Biodiversity & Oil Spill Response Survey, January 2015. Natural and Cultural Heritage Division, DPIPWE, Hobart. Nature Conservation Report Series 15/04. Main cover photo: Micah Visoiu Inside cover: Clare Hawkins Unless otherwise credited, the copyright of all images remains with the Department of Primary Industries, Parks, Water and Environment. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the source and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Wildlife Management Branch, DPIPWE. Page | 2 RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 SUMMARY Rodondo Island was surveyed in January 2015 by staff from the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) to evaluate potential response and mitigation options should an oil spill occur in the region that had the potential to impact on the island’s natural values. Spatial information relevant to species that may be vulnerable in the event of an oil spill in the area has been added to the Australian Maritime Safety Authority’s Oil Spill Response Atlas and all species records added to the DPIPWE Natural Values Atlas.
    [Show full text]
  • Oemona Hirta
    EPPO Datasheet: Oemona hirta Last updated: 2021-07-29 IDENTITY Preferred name: Oemona hirta Authority: (Fabricius) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Cerambycidae Other scientific names: Isodera villosa (Fabricius), Oemona humilis Newman, Oemona villosa (Fabricius), Saperda hirta Fabricius, Saperda villosa Fabricius Common names: lemon tree borer view more common names online... EPPO Categorization: A1 list more photos... view more categorizations online... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: OEMOHI Notes on taxonomy and nomenclature Lu & Wang (2005) revised the genus Oemona, which has 4 species: O. hirta, O. plicicollis, O. separata and O. simplicicollis. They provided an identification key to species and detailed descriptions. They also performed a phylogenetic analysis of all species, suggesting that O. hirta and O. plicicollis are sister species and most similar morphologically. HOSTS O. hirta is a highly polyphagous longhorn beetle. Its larvae feed on over 200 species of trees and shrubs from 63 (Lu & Wang, 2005; Wang, 2017) to 81 (EPPO, 2014) families. Its original hosts were native New Zealand plants, but it expanded its host range to many species exotic to New Zealand, ranging from major fruit, nut, forest and ornamental trees to shrubs and grapevines. Host list: Acacia dealbata, Acacia decurrens, Acacia floribunda, Acacia longifolia, Acacia melanoxylon, Acacia pycnantha, Acer pseudoplatanus, Acer sp., Aesculus hippocastanum, Agathis australis, Albizia julibrissin, Alectryon excelsus, Alnus glutinosa, Alnus incana, Aristotelia serrata, Asparagus setaceus, Avicennia marina, Avicennia resinifera, Azara sp., Betula nigra, Betula pendula, Betula sp., Brachyglottis greyi, Brachyglottis repanda, Brachyglottis rotundifolia, Buddleia davidii, Camellia sp., Carmichaelia australis, Casimiroa edulis, Cassinia leptophylla, Cassinia retorta, Castanea sativa, Casuarina cunninghamiana, Casuarina sp., Celtis australis, Cestrum elegans, Chamaecyparis sp., Chamaecytisus prolifer subsp.
    [Show full text]
  • The Lignotuber of Tutu (Coriaria Arborea) Alan Esler & Wilson Esler
    Cyathodes fraseri Margins broadly hyaline, flat, Dracophyllum muscoides Blade about as long as stoutly ciliate, apex a pungent apicule, veins the sheathing petiole, linear, obscurely serrate strongly raised below. distally. Cyathodes juniperina Blade linear, minutely serrate Epacris alpina and E. pauciflora (both vars) Blade distally, apex a pungent apicule, veins not ovate, margins minutely serrate distally, veins evident above, intervenium below whitened by not at all prominent below, intervenium pale but wax deposited in minutely reticulate fashion. not wax-covered. Cyathodes parviflora Margins usually recurved only Pentachondra pumila Petiole relatively long (c. 1/3 in proximal half of blade, entire, apex with a length of blade); blade lanceolate, margins very short rounded mucro, lower surface with minutely serrate, apex subobtuse, the veins prominent branched and reticulate venation. relatively obvious below (as compared to those Cyathodes pumila Margins flat, entire, apex shortly of Epacris pauciflora) being narrower and paler apiculate, lower surface between midrib and than the intervenium, but not raised. margins entirely covered with a thick (usually Sprengelia incarnata Leaf recurved so that upper non-reticulate) deposit of white wax. half (blade) is at right angles to the stem- Cyathodes robusta Blade lanceolate, margins enclosed lower half (sheathing base/petiole), strongly recurved, apex with short rounded apicule long and subpungent, lower surface of mucro, intervenium below usually whitened with blade with conspicuous pale dots (stomata) and wax deposited in minutely reticulate fashion. obscure veins. References Allan, H. H. 1961: Flora of New Zealand. Vol. 1. Government Printer, Wellington. Poole, A. L. & Adams, N. M. A. 1964. Trees and Shrubs of New Zealand.
    [Show full text]
  • Buzzing Bees and the Evolution of Sexual Floral Dimorphism in Australian Spiny Solanum
    BUZZING BEES AND THE EVOLUTION OF SEXUAL FLORAL DIMORPHISM IN AUSTRALIAN SPINY SOLANUM ARTHUR SELWYN MARK School of Agriculture Food & Wine The University of Adelaide This thesis is submitted in fulfillment of the degree of Doctor of Philosophy June2014 1 2 Table of Contents List of Tables........................................................................................................... 6 List of Figures ......................................................................................................... 7 List of Boxes ......................................................................................................... 10 Abstract ................................................................................................................. 11 Declaration ............................................................................................................ 14 Acknowledgements ............................................................................................... 15 Chapter One - Introduction ................................................................................... 18 Floral structures for animal pollination .......................................................... 18 Specialisation in pollination .................................................................... 19 Specialisation in unisexual species ......................................................... 19 Australian Solanum species and their floral structures .................................. 21 Floral dimorphisms ................................................................................
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Oil and Fatty Acids in Seed of Eggplant (Solanum Melongena
    American Journal of Agricultural and Biological Sciences Original Research Paper Oil and Fatty Acids in Seed of Eggplant ( Solanum melongena L.) and Some Related and Unrelated Solanum Species 1Robert Jarret, 2Irvin Levy, 3Thomas Potter and 4Steven Cermak 1Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Unit, 1109 Experiment Street, Griffin, Georgia 30223, USA 2Department of Chemistry, Gordon College, 255 Grapevine Road, Wenham, MA 01984 USA 3Department of Agriculture, Agricultural Research Service, Southeast Watershed Research Laboratory, P.O. Box 748, Tifton, Georgia 31793 USA 4Department of Agriculture, Agricultural Research Service, Bio-Oils Research Unit, 1815 N. University St., Peoria, IL 61604 USA Article history Abstract: The seed oil content of 305 genebank accessions of eggplant Received: 30-09-2015 (Solanum melongena ), five related species ( S. aethiopicum L., S. incanum Revised: 30-11-2015 L., S. anguivi Lam., S. linnaeanum Hepper and P.M.L. Jaeger and S. Accepted: 03-05-2016 macrocarpon L.) and 27 additional Solanum s pecies, was determined by NMR. Eggplant ( S. melongena ) seed oil content varied from 17.2% (PI Corresponding Author: Robert Jarret 63911317471) to 28.0% (GRIF 13962) with a mean of 23.7% (std. dev = Department of Agriculture, 2.1) across the 305 samples. Seed oil content in other Solanum species Agricultural Research Service, varied from 11.8% ( S. capsicoides-PI 370043) to 44.9% ( S. aviculare -PI Plant Genetic Resources Unit, 420414). Fatty acids were also determined by HPLC in genebank 1109 Experiment Street, accessions of S. melongena (55), S. aethiopicum (10), S. anguivi (4), S. Griffin, Georgia 30223, USA incanum (4) and S.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Mcglone Etal.Pmd
    McGLONE,Available on-line WILMSHURST, at: http://www.nzes.org.nz/nzje LEACH: ECOLOGY AND HISTORY OF BRACKEN 165 An ecological and historical review of bracken (Pteridium esculentum) in New Zealand, and its cultural significance Matt S. McGlone1*, Janet M. Wilmshurst1 and Helen M. Leach2 1Landcare Research, P.O. Box 69, Lincoln 8152, New Zealand 2Department of Anthropology, University of Otago, P.O. Box 56, Dunedin, New Zealand *Author for correspondence (E-mail: [email protected]) ____________________________________________________________________________________________________________________________________ Abstract: New Zealand bracken (Pteridium esculentum) belongs to a group of closely related fern species of near global extent. Pteridium species worldwide are aggressive, highly productive, seral plants, functionally more akin to shrubs than ferns. Their deeply buried starch-rich rhizomes allow them to survive repeated fire and their efficient nutrient uptake permits exploitation of a wide range of soils. They are limited by cool annual temperatures, frost, wind, and shallow, poorly drained and acidic soils. Bracken stands accumulate large amounts of inflammable dead fronds and deep litter and often persist by facilitating fire that removes woody competitors. Bracken was present but not abundant in New Zealand before the arrival of humans. Occasional fire or other disturbances created transient opportunities for it. Rhyolitic volcanic eruptions led to short-lived expansions of bracken, and it briefly became dominant over ash-affected areas of the central North Island after the large AD 186 Taupo Tephra eruption. Andesitic eruptions had limited effects. Bracken became one of the most abundant plants in the country after the arrival of Maori in the 13th century, when massive deforestation affected most of the lowland landscape.
    [Show full text]
  • Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
    Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A.
    [Show full text]