Minimum Estimates of the Amount and Timing of Gases Released Into the Martian Atmosphere from Volcanic Eruptions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater F
A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D. A. Belyaev2 , J. Alday4 , F. Forget5 , F. Daerden6, J. Pla-Garcia7,8 , S. Rafkin8 , C. F. Wilson4, A. Patrakeev2, A. Shakun2, and J. L. Bertaux1 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France e-mail: [email protected] 2 Space Research Institute (IKI) RAS, Moscow, Russia 3 LATMOS/IPSL, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France 4 AOPP, Oxford University, Oxford, UK 5 Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France 6 BIRA-IASB, Bruxelles, Belgium 7 Centro de Astrobiología (CSIC?INTA), Torrejón de Ardoz, Spain 8 Southwest Research Institute, Boulder, CO, USA Received 20 January 2021 / Accepted 23 April 2021 ABSTRACT Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin. Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances. -
The Mystery of Methane on Mars and Titan
The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special. -
Der Schwarze Tag”
CHAPTER XIV “DER SCHWARZE TAG” ’rHE Australian infantry winding along their numerous approach tracks, constantly passing black silent masses of waiting tanks and crowded guns, were excited with their own realisation of the facts to which Monash’s message referred- that at last all five divisions of their national army were attack- ing together, that the Canadian force was attacking beside them, and that this time they were not to be stopped short of the opposing guns-and also of the elating circumstance that, so far, the enemy showed no awareness of the blow about to fall. The infantry brigades started their approach at different hours, mostly between midnight and 1.30 a.m.; the troops of the two divisions that were to launch the first stages of attack (at 4.20) mostly passed through-and reached their jumping-off tapes before-those of the two divisions for the second objective. These then followed and assembled behind them.’ At 3 a.m. when most units of the leading divisions had thus assembled and lain down, but about half of the two rearward ones were still moving up the tracks close behind them,2 the air became dimmed by a morning mist which quickly thickened until at 3.30 it was difficult to see more than twenty yards on either side. “It was getting too foggy to be pleasant,” said Col. Sadler of the 17th Battalion afterwards describing the assembly. Men of Elliott’s 15th Brigade, then toiling up from Bois 1’AbbC to their starting lines by the brickfield in rear of the Australian right, have told how they were becoming anxious as to their direction when lights were suddenly seen in the mist ahead and there was the number of their battalion, 57, glowing above 1 In some places. -
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
Mid-Latitude Ice on Mars: a Science Target for Planetary Climate Histories and an Exploration Target for in Situ Resources
Mid-Latitude Ice on Mars: A Science Target for Planetary Climate Histories and an Exploration Target for In Situ Resources A White Paper submitted to the Planetary Sciences Decadal Survey 2023–2032 Primary Contact: Ali M. Bramson, Purdue University ([email protected]) Authors: Ali M. Bramson1,2 John (Jack) W. Holt2 Eric I. Petersen2,12 Chimira Andres3 Suniti Karunatillake8 Nathaniel E. Putzig6 Jonathan Bapst4 Aditya Khuller9 Hanna G. Sizemore6 Patricio Becerra5 Michael T. Mellon10 Isaac B. Smith6,13 Samuel W. Courville6 Gareth A. Morgan6 David E. Stillman14 Colin M. Dundas7 Rachel W. Obbard11 Paul Wooster15 Shannon M. Hibbard3 Matthew R. Perry6 1Purdue University, 2University of Arizona, 3University of Western Ontario CA, 4Jet Propulsion Laboratory, California Institute of Technology, 5University of Bern CH, 6Planetary Science Institute, 7U.S. Geological Survey, 8Louisiana State University, 9Arizona State University, 10Cornell University, 11SETI Institute, 12University of Alaska Fairbanks, 13York University, 14Southwest Research Institute, 15SpaceX Signatories: Ken Herkenhoff, U.S. Geological Survey Alfred McEwen, U. of Arizona David M. Hollibaugh Baker, NASA GSFC Wendy Calvin, U. of Nevada Reno Stefano Nerozzi, U. of Arizona Nicolas Thomas, U. of Bern, CH Serina Diniega, NASA JPL Paul Hayne, U. of Colorado Boulder Jeffrey Plaut, NASA JPL/Caltech Kim Seelos, JHU/APL Charity Phillips-Lander, SwRI Shane Byrne, U. of Arizona Cynthia Dinwiddie, SwRI Devanshu Jha, MVJ College of Eng., IN Aymeric Spiga, LMD/Sorbonne Université, FR Michael S. Veto, Ball Aerospace Andreas Johnsson, U. of Gothenburg, SE Matthew Chojnacki, PSI Michael Mischna, NASA JPL/Caltech Jacob Widmer, Representing Self Adrian J. Brown, Plancius Research, LLC Carol Stoker, NASA Ames Noora Alsaeed, CU Boulder, LASP Alberto G. -
Atmospheric Dust on Mars: a Review
47th International Conference on Environmental Systems ICES-2017-175 16-20 July 2017, Charleston, South Carolina Atmospheric Dust on Mars: A Review François Forget1 Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Universités, UPMC Univ Paris 06, PSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Ecole Polytechnique, CNRS, Paris, France Luca Montabone2 Laboratoire de Météorologie Dynamique (LMD/IPSL), Paris, France & Space Science Institute, Boulder, CO, USA The Martian environment is characterized by airborne mineral dust extending between the surface and up to 80 km altitude. This dust plays a key role in the climate system and in the atmospheric variability. It is a significant issue for any system on the surface. The atmospheric dust content is highly variable in space and time. In the past 20 years, many investigations have been conducted to better understand the characteristics of the dust particles, their distribution and their variability. However, many unknowns remain. The occurrence of local, regional and global-scale dust storms are better documented and modeled, but they remain very difficult to predict. The vertical distribution of dust, characterized by detached layers exhibiting large diurnal and seasonal variations, remains quite enigmatic and very poorly modeled. Nomenclature Ls = Solar Longitude (°) MY = Martian year reff = Effective radius τ = Dust optical depth (or dust opacity) CDOD = Column Dust Optical Depth (i.e. τ integrated over the atmospheric column) IR = Infrared LDL = Low Dust Loading (season) HDL = High Dust Loading (season) MGS = Mars Global Surveyor (NASA spacecraft) MRO = Mars Reconnaissance Orbiter (NASA spacecraft) MEX = Mars Express (ESA spacecraft) TES = Thermal Emission Spectrometer (instrument aboard MGS) THEMIS = Thermal Emission Imaging System (instrument aboard NASA Mars Odyssey spacecraft) MCS = Mars Climate Sounder (instrument aboard MRO) PDS = Planetary Data System (NASA data archive) EDL = Entry, Descending, and Landing GCM = Global Climate Model I. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J. -
Evidence for Methane in Martian Meteorites
Blamey, N. J. F., Parnell, J., McMahon, S., Mark, D. F., Tomkinson, T., Lee, M., Shivak, J., Izawa, M. R. M., Banerjee, N. R., & Flemming, R. L. (2015). Evidence for methane in Martian meteorites. Nature Communications, 6, [7399]. https://doi.org/10.1038/ncomms8399 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/ncomms8399 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature Publishing Group at doi:10.1038/ncomms8399. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ARTICLE Received 19 Sep 2014 | Accepted 1 May 2015 | Published 16 Jun 2015 DOI: 10.1038/ncomms8399 OPEN Evidence for methane in Martian meteorites Nigel J.F. Blamey1,2, John Parnell2, Sean McMahon2, Darren F. Mark3, Tim Tomkinson3,4, Martin Lee4, Jared Shivak5, Matthew R.M. Izawa5, Neil R. Banerjee5 & Roberta L. Flemming5 The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. -
THE CHANTICLEER Jacksonville State University Jacksonville
Jacksonville State University JSU Digital Commons Chanticleer Historical Newspapers 1985-01-11 Chanticleer | Vol 32, Issue 15 Jacksonville State University Follow this and additional works at: https://digitalcommons.jsu.edu/lib_ac_chanty Recommended Citation Jacksonville State University, "Chanticleer | Vol 32, Issue 15" (1985). Chanticleer. 871. https://digitalcommons.jsu.edu/lib_ac_chanty/871 This Book is brought to you for free and open access by the Historical Newspapers at JSU Digital Commons. It has been accepted for inclusion in Chanticleer by an authorized administrator of JSU Digital Commons. For more information, please contact [email protected]. C Entertainment THE CHANTICLEER Jacksonville State university Jacksonville. Alabama Vol. &No. W January 11, 1985 Mild controversy erupts over - senate resolution By JAN DICKINSON A resolution calling for a faculty-wide vote of "no confidence" in Resident Theron Montgomery was presented to the Faculty Senate at its December 10 meeting, two days before Montgomery anriounced his resignation to the Board of Trustees. Now the sponsor of the resolution, Dr. Gene Blanton, of the English Department, says that he intends to withdraw the resolution at the January 14 meeting of the senate. 13lanton stated in the January 6 edition of the Anniston Star that, because of comments made by several members of the Board of bstees, the wssibility of dropping the resolution was strong. According to that article, trustee Paul Carpenter said, "It (the vote) wouid make absolutely no difference in my opinion. We have studied the entire situation, and we are satisfied with the decision." Another board member, Dwaine Luce, stated, "....the bard is responsible for running the school, and the faculty is responsible for iristructing the students." Echoing the sentiments of Carpenter, he added, "'I'he board has inade its decision and the board, in my pinion, will stand by its decision." According to Dr. -
Seasonal and Interannual Variability of Solar Radiation at Spirit, Opportunity and Curiosity Landing Sites
Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites Álvaro VICENTE-RETORTILLO1, Mark T. LEMMON2, Germán M. MARTÍNEZ3, Francisco VALERO4, Luis VÁZQUEZ5, Mª Luisa MARTÍN6 1Departamento de Física de la Tierra, Astronomía y Astrofísica II, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 2Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA, [email protected]. 3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA, [email protected]. 4Departamento de Física de la Tierra, Astronomía y Astrofísica II, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 5Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 6Departamento de Matemática Aplicada, Universidad de Valladolid, Segovia, Spain, [email protected]. Received: 14/04/2016 Accepted: 22/09/2016 Abstract In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. Key words: Solar radiation; Mars Exploration Rovers; Mars Science Laboratory; opacity, dust; radiative transfer model; Mars exploration. Variabilidad estacional e interanual de la radiación solar en las coordenadas de aterrizaje de Spirit, Opportunity y Curiosity Resumen El presente artículo está dedicado a la caracterización del entorno radiativo en los lugares de aterrizaje de las misiones de la NASA de Mars Exploration Rover (MER) y de Mars Science Laboratory (MSL). -
Planetary Science
Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.