New Evidence on the Origin of Carnivorous Plants Thomas J

Total Page:16

File Type:pdf, Size:1020Kb

New Evidence on the Origin of Carnivorous Plants Thomas J COMMENTARY COMMENTARY New evidence on the origin of carnivorous plants Thomas J. Givnish1 plants to open, infertile, moist sites, however, Department of Botany, University of Wisconsin-Madison, Madison, WI 53706 remained unexplained until modern cost- benefit models showed that carnivores are likely to obtain an advantage in growth rela- Carnivorous plants have fascinated scientists carnivorous plants in 20 genera, 12 families, tive to noncarnivores only on such sites, and the general public since the pioneering and 5 orders of flowering plants (Table 1). where nutrients and nutrients alone limit plant studies of Charles Darwin (1). No doubt Based on DNA sequence phylogenies, these growth, and where carnivory can accelerate part of their wide appeal is that carnivorous species represent at least nine independent plants have turned the evolutionary tables origins of the carnivorous habit per se, and photosynthesis and the conversion of photo- on animals, consuming them as prey, with at least six independent origins of pitfall synthate to new leaf tissue while decreasing the green predators often equipped with re- traps, five of sticky traps, two of snap traps, allocation to root tissue (2, 3, 5, 6). Wet soils markable lures, traps, stomachs, and—in and one of lobster-pot traps. To the extent and fire can favor carnivorous plants, by mak- a few cases—extraordinary speed of move- to which molecular phylogenies have been ing N more limiting for growth while making ment. To be considered carnivorous, a plant calibrated against the ages of fossils of other light and water less limiting (3). The wet, must be able to absorb nutrients from dead plants, these origins of carnivory appear to sandy, fireswept sites in fynbos occupied by bodies adjacent to its surfaces, obtain some have occurred between roughly 8 and 72 Roridula (6) should thus favor carnivory, advantage in growth or reproduction, and million years ago (Mya). In PNAS, Sadowski and indeed Roridula often grows in association have unequivocal adaptations for active et al. (4) contribute to our understanding with large numbers of carnivorous sundews. prey attraction, capture, and digestion (2, of the origins of plant carnivory by describ- Roridula, however, is in other respects 3). Some carnivorous species [e.g., Pinguicula ing the first fossilized trap of a carnivorous highly unusual as a carnivorous plant. Al- (butterworts), Philcoxia]lackobviousattrac- plant, a fragment of a tentacled leaf pre- though its glistening, glandular tentacles tants; some rely on passive pitfalls [e.g., served in Baltic amber from 35 to 47 do trap large numbers of insects, the secre- Cephalotus (Australian pitcher plant), Sarra- Mya, and allied to modern-day Roridula of tions are resinous rather than aqueous, and cenia (American pitcher plants)] rather than monogeneric Roridulaceae (Ericales) from so cannot support the activities of digestive active traps based on sticky tentacles [e.g., South Africa. enzymes. It does not secrete proteolytic en- Byblis, Drosera (sundews)] or snap traps As with most carnivorous plants, the two zymes; several authors thus argued that [e.g., Dionaea (Venus fly-trap), Utricularia living species of Roridula today grow on Roridula could not be carnivorous because (bladderworts)]; and some lack digestive open, extremely infertile, moist sites. The it could not digest prey or absorb the min- enzymes and instead depend on commensal occurrence of carnivorous plants on nutrient- erals released (7, 8). The resinous nature of microbes or insect larvae to break down poor substrates has been understood since Roridula secretions may be an adaptation to prey (e.g., Brocchinia, Darlingtonia,some Darwin showed that such plants augment the summer drought in the Mediterranean species of Sarracenia). Based on these crite- their supply of mineral nutrients through climate it now occupies, in that they do not ria, today we recognize at least 583 species of prey capture. The restriction of carnivorous lose volume or stickiness during long periods of drought; the secretions also do not dissolve during winter rains (9). It turns out that cer- Table 1. Currently recognized groups of carnivorous plants tain hemipterans (Pameridea)arecapableof Order Family or clade Genus/genera* No. of taxa negotiating the glandular leaves of Roridula without becoming entangled; they eat the Poales Bromeliaceae I BrocchiniaP 2 P prey immobilized by the plant, and then Bromeliaceae II Catopsis 1 N from their excretions is absorbed by Eriocaulaceae PaepalanthusP 1 Caryophyllales DNDD clade Roridula (Fig. 1). This process substantially Droseraceae AldrovandaS, DionaeaS, DroseraT 115 augments the N supply to the plants, with Nepenthaceae NepenthesP 90 the plants obtaining 70% or more of their Drosophyllaceae DrosophyllumT 1 nitrogen supply in this fashion (7, 10). The Dioncophyllaceae TriphyophyllumT 1 mutualism appears stabilized by nonlinear Oxalidales Cephalotaceae CephalotusP 1 interactions: excess densities of Pameridea Ericales RS-Actinidiaceae clade turn counterproductive as the bugs switch Sarraceniaceae DarlingtoniaP, HeliamphoraP, SarraceniaP 32 to sap-sucking in the absence of prey, leading Roridulaceae RoridulaT 2 to negative impacts on Roridula and, ulti- T Lamiales Byblidaceae Byblis 6 mately, on the bugs themselves (11). Lentibulariaceae GenliseaL, PinguiculaT, UtriculariaS 330 Plantaginaceae PhilcoxiaT 1 Author contributions: T.J.G. wrote the paper. Taxa include all members of each genus, except for the monocot genera in order Poales, where the number of The author declares no conflict of interest. carnivorous species within the genus is listed. Independent origins of carnivory per se are indicated by boldface entries in the family/clade column. See companion article 10.1073/pnas.1414777111. *Trap types indicated by superscript: L, lobster-pot trap; P, pitfall; S, snap trap; T, sticky trap. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1422278112 PNAS Early Edition | 1of2 Downloaded by guest on October 1, 2021 been a fossil insect egg (18). The remaining fossils considered legitimate remains of carniv- orous plants include one seed (now destroyed) of Byblis (Byblidaceae) from Australia (19), and palynomorphs possibly allied with Nepenthaceae (20). The last two fragments, however, do not demonstrate that the plants to which they belonged were, in fact, carniv- orous, which makes the find by Sadowski et al. (4) particularly important. The age of the am- ber Roridula,35–47 Mya, nicely brackets the divergence between Roridula and noncarnivo- rous Actinidiaceae roughly 39 Mya, as esti- mated from a calibrated DNA phylogeny (21). This result lends credence to the age estimates based on molecular data, and to the inference from phylogenetic reconstruc- tion that early Roridulaceae were carnivorous. The identity of the fossil Roridula appears to be beyond doubt. The former occurrence of Roridula around the Baltic—whereas its pres- ent-day distribution is restricted to the Cape Fig. 1. Growth form of Roridula gorgonias at Fernkloof Nature Reserve near Hermanus, showing glandular ten- FloristicProvinceofsouthwestSouthAfrica— tacles that immobilize insect prey. Close-up of leaves, showing a Pameridea bug (center) that eats immobilized prey impliesthatthisgroupwasoncefarmore and delivers nutrients to the plant via excreta. widespread. The distributions of families in the Clethraceae-Sarraceniaceae-Roridulaceae- Although the Roridula system is truly re- “apparent carnivorous plants,” in homage to Actinidiaceaecladesuggestthatitoriginated markable, similar kinds of complex digestive Holt’s concept of apparent competition (16). in southeastern North America or northern mutualisms may occur in other carnivorous The new fossil Roridula not only is the first South America. In the next few years, further plants. For example, Nepenthes bicalcarata fossil trap leaf uncovered, it is one of the very investigations of the Baltic amber might tell us provides domatia for ants, despite ants being few undoubted fossils of carnivorous plants what other plants grew in association with themostfrequentpreyofmanyNepenthes. of any kind. Archaeamphora from Chinese fossil Roridula, and thus the nature of the Givnish (5) and Hölldobler and Wilson (12) sediments 112 Mya was originally described vegetation in which fossil Roridula grew. proposed that the resident ants and plants as Sarraceniaceae, but now there is strong Based on cost-benefit models, the distribution might have a mutualistic relationship of some doubt that it was a member of that family of present-day Roridula, and the current dis- kind. In fact, the resident ant Camponotus or even a carnivorous plant; the unusual tributions of almost all other carnivorous schmitzi protects N. bicalcarata from weevils leaves may simply not have been traps (17). plants,itseemsmostunlikelythatfossil that attack their tendrils, and in addition Paleoaldrovanda, putatively a member of Dro- Roridula grew below a dense canopy of the facilitates the plant’s uptake of nutrients seraceae based on a “seed,” may actually have conifer forests that produced amber! (13).Theantscanswiminthepitcherfluid without adverse effect, retrieve large prey items, and excrete wastes into the pitcher, 1 Darwin C (1875) Insectivorous Plants (Appleton and Co., London). 11 Anderson B, Midgley JJ (2007) Density-dependent accelerating nutrient uptake; ant wastes ac- 2 Givnish TJ, Burkhardt EL, Happel RE, Weintraub JW (1984) outcomes in a digestive mutualism between carnivorous count for 42–76% of
Recommended publications
  • Foraging Modes of Carnivorous Plants Aaron M
    Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191066 Foraging modes of carnivorous plants Aaron M. Ellison* Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory.
    [Show full text]
  • Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae
    OPEN ACCESS JCTS Article SERIES B Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae R.W. Sanders and T.C. Wood Core Academy of Science, Dayton, TN Abstract The morphological adaptations of carnivorous plants and taxonomic distributions of those adaptations are reviewed, as are the conflicting classifications of the plants based on the adaptations, reproductive morphology, and DNA sequences. To begin developing a creationist understanding of the origin of plant carnivory, we here focus specifically on pitcher plants of Nepenthaceae and Sarraceniaceae because their popularity as cultivated curiosities has generated a literature resource amenable to baraminological analysis. Hybridization records were augmented by total nucleotide differences to assess species similarities. Nonhybridizing species falling within the molecular range of hybridizing species were included in the monobaramin of the hybridizing species. The combined data support each of the three genera of the Sarraceniaceae as a monobaramin, but the three could not be combined into a larger monobaramin. With the Nepenthaceae, the data unequivocally place 73% of the species in a single monobaramin, strongly suggesting the whole genus (and, thus, family) is a monobaramin. The lack of variation in the carnivorous habit provides no evidence for the intrabaraminic origin of carnivory from non-carnivorous plants. An array of fascinating symbiotic relationships of pitchers in some species with unusual bacteria, insects, and vertebrates are known and suggest the origin of carnivory from benign functions of the adaptive structures. However, these symbioses still do not account for the apparent complex design for carnivory characteristic of all species in the two families. Editor: J.W.
    [Show full text]
  • A New Species of Saurauia (Actinidiaceae) from Jharkhand State, India
    J. Jpn. Bot. 84: 233–236 (2009) A New Species of Saurauia (Actinidiaceae) from Jharkhand State, India Vinay ranjan and S. C. srivastava Central National Herbarium, Botanical Survey of India Howrah–711103, INDIA E-mail: [email protected] (Received on November 25, 2008) Saurauia parasnathensis V. Ranjan & S. C. Srivastava is described from India as new to science. This species is characterized by having cymose inflorescence with many- flowered fascicles, yellow flowers and 27–35 stamens in two rows. Key words: Actinidiaceae, India, new species, Saurauia. Saurauia Willd., comprising of 300 27–35 stamens in two rows. species (Mabberley 2005), is distributed in tropical Asia and America (Cuong et al. 2007, Saurauia parasnathensis V. Ranjan & Dressler and Bayer 2004, Soejarto 2004). S. C. Srivastava, sp. nov. [Figs. 1, 2] Hooker (1874) and Paul (1993) described Specibus differt aliis Saurauia cerea eight species from British India and India, Dyer petalis flavis, inflorescentiae cymosae respectively. While collecting the materials for multifloris fasciculis et staminibus 27–35 flora of Parasnath Wildlife Sanctuary, Giridih bistratus ornata. District, Jharkhand State, India between Type: INDIA: Jharkhand State, Giridih 2004 and 2006, the first author collected District, Parasnath Wildlife Sanctuary, alt. an interesting tree species of ca.10 m high, ca.1200 m, 21 March 2005, Vinay Ranjan leafless in flowering during the month of 37947A (holotype–CAL), 37947B (isotype– March, on the hill top. A search of Indian CAL). herbaria and literature revealed that it belongs Trees up to 10 m high, branchlets to the genus Saurauia Willd. (Actinidiaceae), brownish-black with ruptured bark and scars but the characters do not match with any of inflorescence.
    [Show full text]
  • The Terrestrial Carnivorous Plant Utricularia Reniformis Sheds Light on Environmental and Life-Form Genome Plasticity
    International Journal of Molecular Sciences Article The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity Saura R. Silva 1 , Ana Paula Moraes 2 , Helen A. Penha 1, Maria H. M. Julião 1, Douglas S. Domingues 3, Todd P. Michael 4 , Vitor F. O. Miranda 5,* and Alessandro M. Varani 1,* 1 Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; [email protected] (S.R.S.); [email protected] (H.A.P.); [email protected] (M.H.M.J.) 2 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, Brazil; [email protected] 3 Departamento de Botânica, Instituto de Biociências, UNESP—Universidade Estadual Paulista, Rio Claro 13506-900, Brazil; [email protected] 4 J. Craig Venter Institute, La Jolla, CA 92037, USA; [email protected] 5 Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil * Correspondence: [email protected] (V.F.O.M.); [email protected] (A.M.V.) Received: 23 October 2019; Accepted: 15 December 2019; Published: 18 December 2019 Abstract: Utricularia belongs to Lentibulariaceae, a widespread family of carnivorous plants that possess ultra-small and highly dynamic nuclear genomes. It has been shown that the Lentibulariaceae genomes have been shaped by transposable elements expansion and loss, and multiple rounds of whole-genome duplications (WGD), making the family a platform for evolutionary and comparative genomics studies. To explore the evolution of Utricularia, we estimated the chromosome number and genome size, as well as sequenced the terrestrial bladderwort Utricularia reniformis (2n = 40, 1C = 317.1-Mpb).
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Evaluating the Adaptive Evolutionary Convergence of Carnivorous Plant Taxa Through Functional Genomics
    Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics Gregory L. Wheeler and Bryan C. Carstens Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, United States of America ABSTRACT Carnivorous plants are striking examples of evolutionary convergence, displaying complex and often highly similar adaptations despite lack of shared ancestry. Using available carnivorous plant genomes along with non-carnivorous reference taxa, this study examines the convergence of functional overrepresentation of genes previously implicated in plant carnivory. Gene Ontology (GO) coding was used to quantitatively score functional representation in these taxa, in terms of proportion of carnivory- associated functions relative to all functional sequence. Statistical analysis revealed that, in carnivorous plants as a group, only two of the 24 functions tested showed a signal of substantial overrepresentation. However, when the four carnivorous taxa were analyzed individually, 11 functions were found to be significant in at least one taxon. Though carnivorous plants collectively may show overrepresentation in functions from the predicted set, the specific functions that are overrepresented vary substantially from taxon to taxon. While it is possible that some functions serve a similar practical purpose such that one taxon does not need to utilize both to achieve the same result, it appears that there are multiple approaches for the evolution of carnivorous function in plant genomes. Our approach could be applied to tests of functional convergence in other systems provided on the availability of genomes and annotation data for a group. Submitted 27 October 2017 Accepted 13 January 2018 Subjects Bioinformatics, Evolutionary Studies, Genomics, Plant Science Published 31 January 2018 Keywords Carnivorous plants, Gene Ontology, Functional genomics, Convergent evolution Corresponding author Gregory L.
    [Show full text]
  • ACTINIDIACEAE 1. ACTINIDIA Lindley, Nat. Syst. Bot., Ed. 2, 439
    ACTINIDIACEAE 猕猴桃科 mi hou tao ke Li Jianqiang (李建强)1, Li Xinwei (李新伟)1; Djaja Djendoel Soejarto2 Trees, shrubs, or woody vines. Leaves alternate, simple, shortly or long petiolate, not stipulate. Flowers bisexual or unisexual or plants polygamous or functionally dioecious, usually fascicled, cymose, or paniculate. Sepals (2 or 3 or)5, imbricate, rarely valvate. Petals (4 or)5, sometimes more, imbricate. Stamens 10 to numerous, distinct or adnate to base of petals, hypogynous; anthers 2- celled, versatile, dehiscing by apical pores or longitudinally. Ovary superior, disk absent, locules and carpels 3–5 or more; placentation axile; ovules anatropous with a single integument, 10 or more per locule; styles as many as carpels, distinct or connate (then only one style), generally persistent. Fruit a berry or leathery capsule. Seeds not arillate, with usually large embryos and abundant endosperm. Three genera and ca. 357 species: Asia and the Americas; three genera (one endemic) and 66 species (52 endemic) in China. Economically, kiwifruit (Actinidia chinensis var. deliciosa) is an important fruit, which originated in central China and is especially common along the Yangtze River (well known as yang-tao). Now, it is widely cultivated throughout the world. For additional information see the paper by X. W. Li, J. Q. Li, and D. D. Soejarto (Acta Phytotax. Sin. 45: 633–660. 2007). Liang Chou-fen, Chen Yong-chang & Wang Yu-sheng. 1984. Actinidiaceae (excluding Sladenia). In: Feng Kuo-mei, ed., Fl. Reipubl. Popularis Sin. 49(2): 195–301, 309–334. 1a. Trees or shrubs; flowers bisexual or plants functionally dioecious .................................................................................. 3. Saurauia 1b.
    [Show full text]
  • Educational Posters on Threatened Plant Communities of North Carolina
    Submitted by Nicolette L. Cagle on June 26, 2012 Native Plant Studies Certificate Project: Educational Posters on Threatened Plant Communities of North Carolina Nonriverine Wet Hardwood Forest from the Coastal Plain, NC. [Photo by David Blevins, Ph.D.] Submitted by Nicolette L. Cagle on June 26, 2012 Table of Contents Background ................................................................................................................................................... 3 Project Description........................................................................................................................................ 3 Timeline......................................................................................................................................................... 4 Most Threatened Plant Communities in North Carolina .............................................................................. 4 Poster Display at the North Carolina Botanical Garden................................................................................ 5 Posters .......................................................................................................................................................... 6 Introduction .............................................................................................................................................. 6 Threatened Plant Communities ................................................................................................................ 7 Poster Project References
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Carnivorous Plant Newsletter V42 N3 September 2013
    Technical Refereed Contribution Phylogeny and biogeography of the Sarraceniaceae JOHN BRITTNACHER • Ashland, Oregon • USA • [email protected] Keywords: History: Sarraceniaceae evolution The carnivorous plant family Sarraceniaceae in the order Ericales consists of three genera: Dar- lingtonia, Heliamphora, and Sarracenia. Darlingtonia is represented by one species that is found in northern California and western Oregon. The genus Heliamphora currently has 23 recognized species all of which are native to the Guiana Highlands primarily in Venezuela with some spillover across the borders into Brazil and Guyana. Sarracenia has 15 species and subspecies, all but one of which are located in the southeastern USA. The range of Sarracenia purpurea extends into the northern USA and Canada. Closely related families in the plant order Ericales include the Roridu- laceae consisting of two sticky-leaved carnivorous plant species, Actinidiaceae, the Chinese goose- berry family, Cyrillaceae, which includes the common wetland plant Cyrilla racemiflora, and the family Clethraceae, which also has wetland plants including Clethra alnifolia. The rather charismatic plants of the Sarraceniaceae have drawn attention since the mid 19th century from botanists trying to understand how they came into being, how the genera are related to each other, and how they came to have such disjunct distributions. Before the advent of DNA sequencing it was very difficult to determine their relationships. Macfarlane (1889, 1893) proposed a phylogeny of the Sarraceniaceae based on his judgment of the overlap in features of the adult pitchers and his assumption that Nepenthes is a member of the family (Fig. 1a). He based his phy- logeny on the idea that the pitchers are produced from the fusion of two to five leaflets.
    [Show full text]
  • A New Carnivorous Plant Lineage (Triantha) with a Unique Sticky-Inflorescence Trap
    A new carnivorous plant lineage (Triantha) with a unique sticky-inflorescence trap Qianshi Lina,b,1, Cécile Anéc,d, Thomas J. Givnishc, and Sean W. Grahama,b aDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; bUBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; cDepartment of Botany, University of Wisconsin–Madison, Madison, WI 53706; and dDepartment of Statistics, University of Wisconsin–Madison, Madison WI 53706 Edited by Elizabeth A. Kellogg, Donald Danforth Plant Science Center, St. Louis, MO, and approved June 5, 2021 (received for review October 30, 2020) Carnivorous plants consume animals for mineral nutrients that and in wetlands, including bogs, marly shorelines, and calcareous enhance growth and reproduction in nutrient-poor environments. spring-fed fens. In bogs, T. occidentalis is commonly found with Here, we report that Triantha occidentalis (Tofieldiaceae) represents recognized carnivorous plants such as Drosera rotundifolia a previously overlooked carnivorous lineage that captures insects on (Droseraceae) and Pinguicula vulgaris (Lentibulariaceae). During sticky inflorescences. Field experiments, isotopic data, and mixing the summer flowering season, T. occidentalis produces leafless models demonstrate significant N transfer from prey to Triantha, erect flowering stems up to 80 cm tall (12). These scapes have with an estimated 64% of leaf N obtained from prey capture in sticky glandular hairs, especially on their upper portions, a feature previous years, comparable to levels inferred for the cooccurring distinguishing Triantha from other genera of Tofieldiaceae round-leaved sundew, a recognized carnivore. N obtained via carnivory (Fig. 1). Small insects are often found trapped by these hairs; is exported from the inflorescence and developing fruits and may herbarium specimens are frequently covered in insects (Fig.
    [Show full text]