Tio2 DARK ACTIVATION and MICROBIAL STIMULATION

Total Page:16

File Type:pdf, Size:1020Kb

Tio2 DARK ACTIVATION and MICROBIAL STIMULATION DISSERTATION CATALYTIC STRATEGIES FOR ENHANCING ELECTROCHEMICAL OXIDATION OF 1,4-DIOXANE: TiO2 DARK ACTIVATION AND MICROBIAL STIMULATION Submitted by Jeramy R. Jasmann Department of Chemistry In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2016 Doctoral Committee: Advisor: Thomas Borch Co-Advisor: Jens Blotevogel Delphine Farmer William Sanford James Neilson Michael Elliot Copyright by Jeramy Roland Jasmann 2016 All Rights Reserved ABSTRACT CATALYTIC STRATEGIES FOR ENHANCING ELECTROCHEMICAL OXIDATION OF 1,4-DIOXANE: TiO2 DARK ACTIVATION AND MICROBIAL STIMULATION 1,4-dioxane, a probable human carcinogen, is an emerging contaminant currently being reviewed by the U.S. Environmental Protection Agency for possible health-based maximum contaminant level regulations. As both stabilizer in commonly used chlorinated solvents and as a widely used solvent in the production of many pharmaceuticals, personal care products (PPCPs), 1,4-dioxane has been detected in surface water, groundwater and wastewater around the U.S. It is resistant to many of the traditional water treatment technologies such as sorption to activated carbon, air stripping, filtering and anaerobic biodegradation making 1,4-dioxane removal difficult and/or expensive. State-of-the art technologies for the removal of 1,4-dioxane usually apply advanced oxidation processes (AOPs) using strong oxidants in combination with UV-light and sometimes titanium dioxide (TiO2) catalyzed photolysis. These approaches require the use of expensive chemical reagents and are limited to ex situ (i.e. pump and treat) applications. Here, at Colorado State University’s Center for Contaminant Hydrology, innovative flow-through electrolytic reactors have been developed for treating groundwater contaminated with organic pollutants. The research presented in this dissertation has investigated catalytic strategies for enhancing electrochemical oxidation of 1,4-dioxane in flow-through reactors. Two types (abiotic and biotic) of catalysis were also explored: (1) dark, electrolytic activation of insulated, inter-electrode TiO2 pellets to catalyze the degradation of organic pollutants in the ii bulk solution by reactive oxygen species (ROS), and (2) adding permeable electrodes upstream of dioxane-degrading microbes, Pseudonocardia dioxanivorans CB1190, to pre-treat mixed contaminant water and provide O2 stimulation to these aerobic bacteria. For the abiotic form of catalysis, we characterized the properties of novel TiO2 inter- electrode material, and elucidated the properties most important to its catalytic activity, using 1,4-dioxane as the model contaminant. The TiO2 was novel in its use as an “inter-electrode” catalyst (not coated on the electrode and not used as a TiO2 slurry) and in the mechanism of its catalytic activation occurring in dark (not photocatalysis) and insulated (not typical electrocatalysis) conditions. Further studies were performed using electrochemical batch reactors and probe molecules in order to gain mechanistic insights into dark catalysis provided by detached TiO2 pellets in an electrochemical system. The results of our investigations show that electrolytic treatment, when used in combination with this catalytically active inter-electrode material, can successfully and efficiently degrade 1,4-dioxane. Benefits of catalyzed electrolysis as a green remediation technology are that (1) it does not require addition of chemicals during treatment, (2) it has low energy requirements that can be met through the use of solar photovoltaic modules, and (3) it is very versatile in that it could be applied in situ for contaminated groundwater sites or installed in-line on above-ground reactors to remediate contaminated groundwater. Although, 1,4-dioxane appears to be resistant to natural attenuation via anaerobic biodegradation, some aerobic bacteria have been shown to metabolize and co-metabolize 1,4- dioxane. For example, growth-supporting aerobic metabolism/degradation of 1,4-dioxane by Pseudonocardia dioxanivorans CB1190, has been demonstrated in laboratory studies. However, previous studies showed that this biodegradation process is inhibited by the presence of iii chlorinated solvents such as 1,1,1-trichlorethane (1,1,1-TCA) and trichloroethene (TCE). This could dramatically impact the success for in situ 1,4-dioxane biodegradation with P. dioxanivorans since chlorinated solvents are common co-contaminants of 1,4-dioxane. Our previous investigations into electrolytic treatment of organic pollutants both ex and in situ showed that effective degradation of chlorinated solvents like TCE was achievable. In addition, the electrolysis of water generates molecular O2 required by the CB1190 bacteria as well. This led us to hypothesize that the generation of O2 could enhance aerobic biodegradation processes, and the concurrent degradation of co-solvents could reduce their inhibitory impact on 1,4- dioxane biodegradation. In flow-through sand column studies presented here, we investigate the electrolytic stimulation of Pseudonocardia dioxanivorans CB1190, with the expectation that anodic O2 generation would enhance aerobic biodegradation processes, and concurrent degradation of TCE would reduce the expected inhibitory impact on 1,4-dioxane biodegradation. Results show that when both electrolytic and biotic processes are combined, oxidation rates of 1,4-dioxane substantially increased suggesting that aerobic biodegradation processes had been successfully stimulated. In summary, the results of this dissertation provide evidence of (1) efficient removal of recalcitrant 1,4-dioxane, especially with the addition of inter-electrode TiO2 catalysts, (2) elucidate possible mechanistic pathways for electro-activated dark TiO2 catalysis, and (3) provide evidence for successful synergistic performance for electro-bioremediation treatment during simulated mixed, contaminant plume conditions. iv ACKNOWLEDGEMENTS Thank you God for this amazing opportunity and for bringing so many special people into my life during this time. Thank you God for listening to my prayers, providing me with blessing when I needed them most [Matthew 6:25-34], and helping my family to make it through this challenging financial season as an intact, active, healthy and truly joyous family of five: “The Jasmann Five” (only we don’t sing…well). By diving deeper into science, I continue to be impressed by your creation and the natural laws you have put into motion [Romans 1:19-20]. These laws of chemistry, thermodynamics, electromagnetism and others, are what provide endless discoveries for us to make as scientist. I would like to thank my advisors Dr. Thomas Borch and Dr. Jens Blotevogel who have provided invaluable guidance and helped me to establish a remarkable foundation in hypothesis- driven research. Without their advice, support, and friendship, my journey to this publication would not have been possible. I would like to thank Dr. Borch for his enthusiasm for science and for working with me to find an interdisciplinary research problem with applicable outcomes relevant to the protection of human health and the environment; it was exactly what I had hoped for. I would like to thank Dr. Blotevogel for his desire to research practical remediation solutions for recalcitrant environmental contaminants (a tough and uncertain field at times), and his outstanding intellectual contributions when discussing difficult scientific problems, especially when providing critical revisions and structure to my writing near the end of my time here. I would like to thank Dr. Tom Sale of the Center for Contaminant Hydrology (CCH) who has been a close collaborator throughout my doctoral work and who made it possible for my entire Ph.D. program to be funded by industry-university collaborations he has formed over the years. v Dr. Sale has an uncanny ability to distill industry problems down to their most important needs in order to target the problem and investigate solutions most efficiently. I would also like to thank Gary Dick, our laboratory manager in the CCH, who was instrumental in the experimental design phase when building my flow-through electrochemical reactors. His retirement midway through my program left a gaping hole, losing his unmatched mechanical expertise and losing the continuous stream of oddly funny jokes and quips he seemed to always have at the ready. I would like to recognize the financial assistance that made this work possible. I thank Dr. Masayuki Shimizu for conducting the synchrotron radiation-based XRD with me at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Thank you to Dr. Yury Desyaterik, Ali Boris and Robert Young for their patient guidance in the use of LC/ESI-TOF-MS, and LC/UV, respectively. My work was primarily supported by E. I. du Pont de Nemours and Company (DuPont) and The Chemours Company, along with complementary support from General Electric, three outstanding companies who recognize the environmental concern posed by 1,4-dioxane, and were committed to fully funding my research to discover novel, effective, and economical remediation options. I met many fellow researchers and students throughout this processes that I consider both friends and colleagues. Many members of the Borch group and CCH laboratory group have made lasting impressions
Recommended publications
  • Aerosol Fragmentation Driven by Coupling of Acid–Base and Free
    Lawrence Berkeley National Laboratory Recent Work Title Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals. Permalink https://escholarship.org/uc/item/2hx5q6wq Journal The journal of physical chemistry. A, 121(31) ISSN 1089-5639 Authors Liu, Matthew J Wiegel, Aaron A Wilson, Kevin R et al. Publication Date 2017-08-01 DOI 10.1021/acs.jpca.7b04892 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1 Aerosol Fragmentation Driven by Coupling of Acid-Base and Free Radical 2 Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH 3 Radicals 4 Matthew J. Liu,a,b Aaron A. Wiegel,a Kevin R. Wilson,†a and Frances A. Houle†a 5 aLawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, USA 6 94702 7 bUniversity of California, Berkeley, Department of Chemical and Biomolecular Engineering, 8 Berkeley, CA, USA 94720 9† Authors to whom correspondence should be addressed: 10Frances A. Houle ([email protected]) and Kevin R. Wilson ([email protected]) 11 12Abstract 13A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) 14in aqueous phase aerosol is how the free radical reaction pathways might be altered by acid-base 15chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation 16and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in 17reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. 18To examine these questions, a kinetic model is developed for the OH initiated oxidation of citric 19acid aerosol at high relative humidity.
    [Show full text]
  • A Comparison Op Phenylhydrazine Oxalate with Mesoxalic Acid Phenyleydrazone
    I724 W. I,. EVANS, W. L. MONG AND F. L. SINKS. [CONTRIEUTXON FROM THE CHEMICAL LABORATORYOB THE OHIO STATE UNIVERSITY.] A COMPARISON OP PHENYLHYDRAZINE OXALATE WITH MESOXALIC ACID PHENYLEYDRAZONE. BY W. L. EVANS,W. I,. MONCAND F. L. SINKS. Received May 26, 1917. While making an examination of the products obtained by the oxidation of potassium lactate by means of potassium permanganate in the presence of small quantities of potassium hydroxide, Paul A. Davis and one of us found a white, leafy, mother-of-pearl, crystalline mass after acidifying the filtrate from the oxide of manganese with acetic acid and then adding a solution of phenylhydrazine in diluted acetic acid.l This substance was associated with the pyruvic acid phenylhydrazone from which it could be easily separated, owing to the fact that it was difficultly soluble in alcohol. This compound was found to be identical in every respect with the compound described by Causse as mesoxalic acid phenylhydra- zone, m. p. 163' to 164'.~ Causse obtained this compound from bismuth mesoxalate which he had prepared by the oxidation of glycerol by means of a mixture of bismuth nitrate, potassium nitrate and nitric acid. On the other hand, Fischer3 describes mesoxalic acid phenylhydrazone as a substance which crystallizes from hot water or dilute alcohol in fine yellow needles. According to Elbers4 it has the following composition: CsH6.NH.N = C(COOH)2, and melts between 163' and 164'. Clemms gives the melting point of this compound as 174' if heated quickly. A comparison of the compound obtained by Fischer and that obtained by the repetition of Causse's experiments, showed that they were two entirely different substances.
    [Show full text]
  • Carbon Dioxide Production in the Oxidation of Organic Acids by Cerium(IV) Under Aerobic and Anaerobic Conditions
    JCK(Wiley) RIGHT BATCH Carbon Dioxide Production in the Oxidation of Organic Acids by Cerium(IV) under Aerobic and Anaerobic Conditions KARA BUTLER, OLIVER STEINBOCK,* BETTINA STEINBOCK,* NAR S. DALAL Florida State University, Department of Chemistry, Tallahassee, Florida 32306-3006 Received 16 March 1998; accepted 2 June 1998 ABSTRACT: The stoichiometry of CO2 production during the ceric oxidation of various organic acids is measured under conditions with organic acid excess. Measurements utilize a photo- metric methodology. For anaerobic conditions stoichiometries [CO2]produced : [Ce(IV)]reduced of about 0 (malonic acid), 0.5 (e.g., glyoxylic acid), and 1.0 (oxalic acid) are found. Oxalic acid showed an oxygen-induced decrease of CO2 production, while other compounds such as ma- lonic acid increased the amount of produced CO2 or showed no changes (e.g., tartronic acid). In the case of mesoxalic acid the stoichiometry is increased from about 0.5 to 2.0 due to the presence of molecular oxygen. The results are discussed on the basis of simple reaction mech- anisms demonstrating that useful information on reaction pathways and intermediates can be extracted from these simple measurements. ᭧ 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 899±902, 1998 The study of oxidation of relatively low molecular and involve numerous organic acids and radicals as weight carbonic acids by metal ions has been an active intermediates [4,7]. A common characteristic, how- area of kinetics [1]. In particular the oxidation of ma- ever, is that most organic acids are oxidized to carbon lonic acid (CH2(COOH)2) and similar compounds by dioxide.
    [Show full text]
  • Catalytic Oxidation of Glycerol to Dihydroxyacetone
    CATALYTIC OXIDATION OF GLYCEROL TO DIHYDROXYACETONE Wenbin Hu, Brian Lowry and Arvind Varma * School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA Summary Selective oxidation of glycerol to dihydroxyacetone was investigated using Pt-Bi/C bi-metallic catalyst. The catalysts with different metal loadings, supports and synthesis methods were synthesized and tested in a semi-batch reactor. The optimum catalyst was 3wt%Pt, with sequential 0.6wt%Bi impregnation on Norit Darco 20-40 mesh activated carbon, followed by NaBH 4 reduction, for reaction rate and DHA selectivity. With the optimum catalyst, the reaction conditions (temperature, pressure, pH, etc) in the semi-batch reactor were optimized, with which the maximum DHA yield of 46% was obtained at nearly full glycerol conversion. The catalysts were characterized using BET, ICP-OES, TEM, XRD and XPS techniques. Keywords Glycerol; Dihydroxyacetone; Selective Oxidation; Platinum-Bismuth catalyst Introduction Identifying new uses of glycerol, a waste of biodiesel Experimental production from transesterification of vegetable oils, is of Catalyst Synthesis great current interest. Towards this end, many value-added Pt-Bi/C catalysts with different loadings, supports, chemicals, such as propanediol, propylene, impregnation sequences and reduction methods were epichlorohydrin and methanol, have been explored by synthesized. A typical synthesis procedure is described as chemical companies. The use of glycerol to synthesize follows: activated carbon (AC) was submerged in water these chemicals, however, is less attractive due to the with sonication. A predetermined amount of chloroplatinic limited amount of value added. We use glycerol as a acid hydrate was dissolved in 1.2N HCl and added feedstock for its selective oxidation to produce high-value dropwise to the well-stirred AC slurry.
    [Show full text]
  • Conversion of Glycerol to Lactic Acid Under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 Conversion of Glycerol to Lactic Acid under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts Lu Chen [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Bioresource and Agricultural Engineering Commons Recommended Citation Chen, Lu, "Conversion of Glycerol to Lactic Acid under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/960 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Lu Chen entitled "Conversion of Glycerol to Lactic Acid under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Biosystems Engineering. Xiaofei P. Ye, Major Professor We have read this thesis and recommend its acceptance: Douglas G. Hayes, Qixin Zhong Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Conversion of Glycerol to Lactic Acid under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Lu Chen August 2011 Copyright © 2011 by Lu Chen All rights reserved.
    [Show full text]
  • The Radiolysis of Aqueous Sodium Formate Solutions
    EUR 1914 e Part I EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM HIGH DOSE INTEGRATING CHEMICAL DOSIMETERS The radiolysis of aqueous sodium formate solutions by G. JUPPE, H. KOLMAR and R. FANTECHI 1968 Joint Nuclear Research Center Ispra Establishment - Italy Chemistry Department Organic Chemistry LEGAL NOTICE This document was prepared under the sponsorship of the Commission of the European Communities. Neither the Commission of the European Communities, its contractors nor any person acting on their behalf : Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information con• tained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. This report is on sale at the addresses listed on cover page 4 at the price of FF 5.— FB 50.— DM 4.— Lit. 620 Fl. 3.60 When ordering, please quote the EUR number and the title, which are indicated on the cover of each report. Printed by Guyot, s.a. Brussels, May 1968 This document was reproduced on the basis of the best available copy. EUR 3914 e Part I EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM HIGH DOSE INTEGRATING CHEMICAL DOSIMETERS The radiolysis of aqueous sodium formate solutions by G. JUPPE, H. KOLMAR and R. FANTECHI 1968 Joint Nuclear Research Center Ispra Establishment - Italy Chemistry Department Organic Chemistry SUMMARY The fast electron radiolysis of aqueous sodium formate solutions was studied.
    [Show full text]
  • A Nets Prepared from a Copper(II) Trinuclear Secondary Building Unit
    7478 Inorg. Chem. 2010, 49, 7478–7490 DOI: 10.1021/ic100796e Magnetic Ordering in Two Molecule-Based (10,3)-a Nets Prepared from a Copper(II) Trinuclear Secondary Building Unit Beatriz Gil-Hernandez,†,‡ Pedro Gili,†,§ Jana K. Vieth,^,z Christoph Janiak,*,^ and Joaquı´n Sanchiz*,† †Departamento de Quı´mica Inorganica, Universidad de La Laguna, c/o Astrofı´sico Francisco Sanchez s/n, 38206 La Laguna, Spain, and ^Institut fur€ Anorganische und Analytische Chemie, Universitat€ Freiburg, Albertstrasse 21, 79104 Freiburg, Germany. ‡E-mail: [email protected]. §E-mail: [email protected]. zE-mail: jana.vieth@ ac.uni-freiburg.de. Received April 23, 2010 Two new molecule-based materials of formulas 3D-{[K(H2O)6]0.5[K(18-crown-6)]0.5[MnCu3(Hmesox)3] 3 5.25H2O}(1) and 3D-{(Ph4P)2[MnCu3(Hmesox)3Cl] 3 3.5H2O}(2) have been prepared from a tricopper(II) secondary building unit 3- (SBU), [Cu3(Hmesox)3] (H4mesox = mesoxalic acid, 2-dihydroxymalonic acid). Compound 1 is obtained by means of the reaction of the SBU with manganese(II) acetate in the presence of potassium cations and the 18-crown-6 ether, whereas compound 2 is obtained by means of the reaction of the SBU with manganese(II) acetate in the presence of - 2- Ph4PCl. The [MnCu3(Hmesox)3] and [MnCu3(Hmesox)3Cl] moieties in compounds 1 and 2, respectively, yield chiral 3-connected three-dimensional (3D) anionic (10,3)-a (srs, SrSi2) nets. In the cubic and centrosymmetric structures þ (Pa3) of 1, two inversion-symmetry-related anion nets interpenetrate to a racemic structure.
    [Show full text]
  • CCCXXIV.-TT;Tbe Oxidution of Xucrose by Nitric Acid. by FREDERICKDANIEL CHATTAWAP and HINTONJOHN HARRIS
    View Article Online / Journal Homepage / Table of Contents for this issue THE OXIDATION OF SUCROSE BY NITRIC ACID. 2703 Published on 01 January 1922. Downloaded by North Carolina State University 09/12/2014 09:52:42. CCCXXIV.-TT;Tbe Oxidution of Xucrose by Nitric Acid. By FREDERICKDANIEL CHATTAWAP and HINTONJOHN HARRIS. FORover a hundred and fifty years the action which takes place when sucrose is oxidised by nitric acid has attracted the attention of chemists, and its spectacular character, from the torrents of nitrogen peroxide evolved, still makes it a favourite laboratory experiment. It has considerable historical interest, for it was from the product of this action that Bergman (“ Opuscula Physica et Chemica,” Vol. 1, p. 238. De acido Xacchari) about 1776 first isolated oxalic acid. From the testimony of several of his friends, it appears that Scheele had identified the acid shortly before, though whether he obtained it from sugar or from wood sorrel is not clear, for he never published any account of his work. For a View Article Online 2704 CHATTAWAY AND HARRIS : long time, Bergman's process was in everyday use for making oxalic acid, but apparently no very detailed account of it was published until Thompson (Pharm..J., 1848-1849, 8, 117) took up the subject about 1848 and described what he had found to bc thc most satisfactory procedure. Since that time, little close attention has been directed to the subject, and oxalic acid has been generally regarded as the sole end-product. A re-examination of the reaction, however, has shown that, in addition to oxalic acid, mesoxalic acid is formed in considerable quantity and that the violent oxidation of sugar by nitric acid is the most advantageous way of preparing this little-known compound.
    [Show full text]
  • Supplement Of
    Supplement of Feedbacks between acidity and multiphase chemistry of atmospheric aqueous particles and clouds 5 Andreas Tilgner1, Thomas Schaefer1, Becky Alexander2, Mary Barth3, Jeffrey L. Collett, Jr.4, Kathleen M. Fahey5, Athanasios Nenes6,7, Havala O. T. Pye5, Hartmut Herrmann1*, and V. Faye McNeill8* 1Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany 2Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA 10 3National Center for Atmospheric Research, Boulder, CO, 80307, USA 4Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA 5Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA 6 School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH- 1015, Switzerland 15 7Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece 8Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA Correspondence to: V. Faye McNeill ([email protected]), H. Herrmann ([email protected]) 1 Supplementary material to section 2 20 Table S1: Summary of the applied !"($) and &!' values for calculation of the LWC-acidity dependent aqueous fraction ($')presented in Figure 2, Figure 3 and Figure S1. KH Compound Reference pKa1 pKa2 Reference (298K) M atm-1 Sulfurous acid 1.32 Sander (2015) 1.9 7.0 Kolthoff and Elving (1959) (dissolved SO2) Nitrous acid 48.6 Park and Lee (1988) 3.29 — Kolthoff and Elving (1959) HONO Formic acid 5530 Khan et al. (1992) 3.77 — Braude et al. (1955) HCOOH Acetic acid 5471 Khan et al. (1992) 4.76 — Haynes (1958) CH3COOH Glycolic acid 2.83·104 Ip et al.
    [Show full text]
  • View to Its Use in An
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 Electro-Oxidation of Glycerol with Electroless CuNiMoP: Production of Fine Chemicals and Prospects for Co-Generation of Energy Oyidia Elendu Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING ELECTRO-OXIDATION OF GLYCEROL WITH ELECTROLESS CUNIMOP: PRODUCTION OF FINE CHEMICALS AND PROSPECTS FOR CO-GENERATION OF ENERGY By OYIDIA ELENDU A Dissertation submitted to the Department of Biomedical and Chemical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017 Oyidia Elendu defended this dissertation on April 11, 2017. The members of the supervisory committee were: Yaw Yeboah Professor Co-Directing Dissertation Egwu Kalu Professor Co-Directing Dissertation Peter Kalu University Representative John Telotte Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS I would like to first thank my supervisors, Dr. Egwu E. Kalu and Dr. Yaw Yeboah, for the opportunity to do this work. They believed that I could do it and thus, guided, encouraged and often pushed me beyond what I thought was adequate. I see the individual strengths they each brought to bear on this project, and I am grateful. I would also like to thank my committee members: Dr. Telotte always provided a fresh perspective to the challenges I encountered, and often his suggestions helped to find my way out of a maze.
    [Show full text]
  • Improving Selectivity of Gold Nanoparticles for Glycerol Electro‑Oxidation Via Interaction with Non‑Noble Metals
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Improving selectivity of gold nanoparticles for glycerol electro‑oxidation via interaction with non‑noble metals Thia, Larissa Yi Ping 2017 Thia, L. Y. P. (2017). Improving selectivity of gold nanoparticles for glycerol electro‑oxidation via interaction with non‑noble metals. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/70202 https://doi.org/10.32657/10356/70202 Downloaded on 29 Sep 2021 18:20:57 SGT IMPROVING SELECTIVITY OF GOLD NANOPARTICLES FOR GLYCEROL ELECTRO-OXIDATION VIA INTERACTION WITH NON-NOBLE METALS THIA YI PING LARISSA Interdisciplinary Graduate School NEWRI-Residues & Resource Reclamation Centre 2016 IMPROVING SELECTIVITY OF GOLD NANOPARTICLES FOR GLYCEROL ELECTRO-OXIDATION VIA INTERACTION WITH NON-NOBLE METALS THIA YI PING LARISSA Interdisciplinary Graduate School NEWRI- Residues & Resource Reclamation Centre A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2016 To my parents, with gratitude. Acknowledgements First and foremost, I would like to thank my supervisor, Prof Wang Xin, for giving me the opportunity to join his research group and work on this project. Your patience and support over the course of my PhD studies has been instrumental in helping me persist despite my numerous failures. I have also benefited greatly from the academic advice you have given me. To my lab mates, both past and present, including: Zhou Huiming, Yan Ya, Xiao Peng, Xia Baoyu, Peng Yuecheng and Nsanzimana Jean Marie Vianney thanks for the help and support.
    [Show full text]
  • LX XXI I. -Fuher Studies on Dihy Droxywml Eic a Cid
    View Article Online / Journal Homepage / Table of Contents for this issue 504 FENTON: FURTHER STUDIES ON Downloaded by Stanford University on 09/04/2013 20:05:03. Published on 01 January 1905 http://pubs.rsc.org | doi:10.1039/CT9058700804 LX XXI I. -Fuher Studies on Dihy droxywml eic A cid. By HENRYJOHN HORSTMAN FENTON, M.A., F.R.S. THE mode of formation, constitution, properties and relationships of dihydroxymaleic acid have been discussed in several previous communications to the Society and elsewhere (Trans., 1894, 65,899 ; 1895,67, 48 and 774; 1S96, 69, 516 ; 1897, '71, 375 ; 1898, '73, 71 ; 1902, 81, 426; Proc., 1898, 14, 119; PYW. Camb. Phil. SOC.,1901, 11, 109 ; 1902, 11, 358, &r.), and in the present paper an account is given bIHYDROXYMALEIC ACID. 805 View Article Online of some of the principal investigations which have since been carried out in connection with the subject. This acid proves to be of importance not only in consequence of the scientific interest attaching to its constitution and peculiar mode of formation, but also because it serves as the starting point for the preparation, by direct and simple transformations, of many compounds which can otherwise only be obtained with considerable difficulty or not at all. In the communications above referred to it was shown that th6 acid results from the oxidation of tartaric acid in presence of ferrous iron ; it is thus obtained in the form of lustrous, diamond-shaped plates which have the formula C4H,0,,2H,O. It is a dibasic acid, as evidenced by the composition of its salts and esters; the presence also of two alcoholic hydroxgl groups is shown by the action of acetic anhydride and of acetyl and benzoyl chlorides.
    [Show full text]