2012/025921 Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Improved Synthesis of Carbamates
DECEMBER,1963 AN IMPROVEDSYNTHESIS OF CARBAMATES 342 1 tion, extraction with methylene chloride, and removal of the sol- (V), m.p. 223-224". The reaction mixture had a strong odor of vent a small amount of white solid. This solid was recrystallized mesitol, but no attempt was made to isolate it. twive from hexane to yield white needles of a-t-butoxy-a-mesityl- 2-Mesity1-lj3-indandionewith Diphenyliodonium Chloride .- acetophenone-0-carboxylic acid, m.p. llE~116~. To a solution of 84.8 mg. (0.76 mmole) of potassium t-butoxide in Anal. Calcd. for CZZHZ~~O~:C, 74.55; H, 7.39; mol. wt., 20 ml. of t-butyl alcohol there was added with stirring 200 mg. 354.43. Found: C, 74.50; H, 7.36; mol. wt., 392 and 311. (0.76 mmole) of l' and 243 mg. (0.76 mmole) of diphenyliodo- Removal of the &Butyl Group in Compound VI.-A solution of nium chloride. The orange solution was refluxed overnight, dur- 250 mg. of VI in 15 ml. of dioxane and 5 ml. of 6 N hydrochloric ing which time it turned a light yellow, and all the iodonium cation acid was heated on a steam bath for 2 hr. During this time the was consumed. The solvent was removed, and the residue was solution was reduced to half the volume, with formation of light chromatographed on a 100-g. Florid column. The ether eluate ivory colored needles. The mixture was diluted with 25 ml. of yielded a yellow oil which after two distillations at 180-200' water, the solid was collected and chromatographed on silica gel. -
Tio2 DARK ACTIVATION and MICROBIAL STIMULATION
DISSERTATION CATALYTIC STRATEGIES FOR ENHANCING ELECTROCHEMICAL OXIDATION OF 1,4-DIOXANE: TiO2 DARK ACTIVATION AND MICROBIAL STIMULATION Submitted by Jeramy R. Jasmann Department of Chemistry In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2016 Doctoral Committee: Advisor: Thomas Borch Co-Advisor: Jens Blotevogel Delphine Farmer William Sanford James Neilson Michael Elliot Copyright by Jeramy Roland Jasmann 2016 All Rights Reserved ABSTRACT CATALYTIC STRATEGIES FOR ENHANCING ELECTROCHEMICAL OXIDATION OF 1,4-DIOXANE: TiO2 DARK ACTIVATION AND MICROBIAL STIMULATION 1,4-dioxane, a probable human carcinogen, is an emerging contaminant currently being reviewed by the U.S. Environmental Protection Agency for possible health-based maximum contaminant level regulations. As both stabilizer in commonly used chlorinated solvents and as a widely used solvent in the production of many pharmaceuticals, personal care products (PPCPs), 1,4-dioxane has been detected in surface water, groundwater and wastewater around the U.S. It is resistant to many of the traditional water treatment technologies such as sorption to activated carbon, air stripping, filtering and anaerobic biodegradation making 1,4-dioxane removal difficult and/or expensive. State-of-the art technologies for the removal of 1,4-dioxane usually apply advanced oxidation processes (AOPs) using strong oxidants in combination with UV-light and sometimes titanium dioxide (TiO2) catalyzed photolysis. These approaches require the use of expensive chemical reagents and are limited to ex situ (i.e. pump and treat) applications. Here, at Colorado State University’s Center for Contaminant Hydrology, innovative flow-through electrolytic reactors have been developed for treating groundwater contaminated with organic pollutants. -
Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds. -
Water Feed Methods to Control Mw Distribution and Byproducts of the Carbamylation of Urea
(19) TZZ _T (11) EP 2 949 687 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.12.2015 Bulletin 2015/49 C08G 71/02 (2006.01) C08G 63/48 (2006.01) (21) Application number: 15167165.8 (22) Date of filing: 11.05.2015 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Anderson, Jeff R. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Midland, Michigan 48642 (US) PL PT RO RS SE SI SK SM TR • Daryoosh, Beigzadeh Designated Extension States: Midland, Michigan 48640 (US) BA ME • Yiyong, He Designated Validation States: Midland, Michigan 48642 (US) MA • Congcong, Lu Midland, Michigan 48640 (US) (30) Priority: 29.05.2014 US 201462004545 P (74) Representative: Houghton, Mark Phillip (71) Applicant: Dow Global Technologies Llc Patent Outsourcing Limited Midland, MI 48674 (US) 1 King Street Bakewell, Derbyshire DE45 1DZ (GB) (54) WATER FEED METHODS TO CONTROL MW DISTRIBUTION AND BYPRODUCTS OF THE CARBAMYLATION OF UREA (57) The present invention provides methods for carbamylation catalysts. The polycarbamate of the making a polycarbamate by feeding a) a urea in fluid form present invention when combined with a polyaldehyde into areaction medium containing b)an alkyd polyol, such or an acetal or hemiacetal thereof as a second compo- as a short or med oil alkyd polyol to form a reaction mix- nent makes a multicomponent composition that is sub- ture and then carbamylating the alkyd polyol by heating stantially isocyanate-free, and cures at a temperature of the reaction mixture while feeding water in to the reaction from 0 °C to less than 80 °C to form a crosslinked poly- mixture, preferably, in the presence of one or more c) urethane. -
Aerosol Fragmentation Driven by Coupling of Acid–Base and Free
Lawrence Berkeley National Laboratory Recent Work Title Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals. Permalink https://escholarship.org/uc/item/2hx5q6wq Journal The journal of physical chemistry. A, 121(31) ISSN 1089-5639 Authors Liu, Matthew J Wiegel, Aaron A Wilson, Kevin R et al. Publication Date 2017-08-01 DOI 10.1021/acs.jpca.7b04892 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1 Aerosol Fragmentation Driven by Coupling of Acid-Base and Free Radical 2 Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH 3 Radicals 4 Matthew J. Liu,a,b Aaron A. Wiegel,a Kevin R. Wilson,†a and Frances A. Houle†a 5 aLawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, USA 6 94702 7 bUniversity of California, Berkeley, Department of Chemical and Biomolecular Engineering, 8 Berkeley, CA, USA 94720 9† Authors to whom correspondence should be addressed: 10Frances A. Houle ([email protected]) and Kevin R. Wilson ([email protected]) 11 12Abstract 13A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) 14in aqueous phase aerosol is how the free radical reaction pathways might be altered by acid-base 15chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation 16and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in 17reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. 18To examine these questions, a kinetic model is developed for the OH initiated oxidation of citric 19acid aerosol at high relative humidity. -
A Comparison Op Phenylhydrazine Oxalate with Mesoxalic Acid Phenyleydrazone
I724 W. I,. EVANS, W. L. MONG AND F. L. SINKS. [CONTRIEUTXON FROM THE CHEMICAL LABORATORYOB THE OHIO STATE UNIVERSITY.] A COMPARISON OP PHENYLHYDRAZINE OXALATE WITH MESOXALIC ACID PHENYLEYDRAZONE. BY W. L. EVANS,W. I,. MONCAND F. L. SINKS. Received May 26, 1917. While making an examination of the products obtained by the oxidation of potassium lactate by means of potassium permanganate in the presence of small quantities of potassium hydroxide, Paul A. Davis and one of us found a white, leafy, mother-of-pearl, crystalline mass after acidifying the filtrate from the oxide of manganese with acetic acid and then adding a solution of phenylhydrazine in diluted acetic acid.l This substance was associated with the pyruvic acid phenylhydrazone from which it could be easily separated, owing to the fact that it was difficultly soluble in alcohol. This compound was found to be identical in every respect with the compound described by Causse as mesoxalic acid phenylhydra- zone, m. p. 163' to 164'.~ Causse obtained this compound from bismuth mesoxalate which he had prepared by the oxidation of glycerol by means of a mixture of bismuth nitrate, potassium nitrate and nitric acid. On the other hand, Fischer3 describes mesoxalic acid phenylhydrazone as a substance which crystallizes from hot water or dilute alcohol in fine yellow needles. According to Elbers4 it has the following composition: CsH6.NH.N = C(COOH)2, and melts between 163' and 164'. Clemms gives the melting point of this compound as 174' if heated quickly. A comparison of the compound obtained by Fischer and that obtained by the repetition of Causse's experiments, showed that they were two entirely different substances. -
The Fabrication and Characterization of Metal Oxide Nanoparticles Employed in Environmental Toxicity and Polymeric Nanocomposite Applications
University of Kentucky UKnowledge Theses and Dissertations--Chemical and Materials Engineering Chemical and Materials Engineering 2019 THE FABRICATION AND CHARACTERIZATION OF METAL OXIDE NANOPARTICLES EMPLOYED IN ENVIRONMENTAL TOXICITY AND POLYMERIC NANOCOMPOSITE APPLICATIONS Matthew Logan Hancock University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-8492-3512 Digital Object Identifier: https://doi.org/10.13023/etd.2020.007 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Hancock, Matthew Logan, "THE FABRICATION AND CHARACTERIZATION OF METAL OXIDE NANOPARTICLES EMPLOYED IN ENVIRONMENTAL TOXICITY AND POLYMERIC NANOCOMPOSITE APPLICATIONS" (2019). Theses and Dissertations--Chemical and Materials Engineering. 112. https://uknowledge.uky.edu/cme_etds/112 This Doctoral Dissertation is brought to you for free and open access by the Chemical and Materials Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemical and Materials Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Carbon Dioxide Production in the Oxidation of Organic Acids by Cerium(IV) Under Aerobic and Anaerobic Conditions
JCK(Wiley) RIGHT BATCH Carbon Dioxide Production in the Oxidation of Organic Acids by Cerium(IV) under Aerobic and Anaerobic Conditions KARA BUTLER, OLIVER STEINBOCK,* BETTINA STEINBOCK,* NAR S. DALAL Florida State University, Department of Chemistry, Tallahassee, Florida 32306-3006 Received 16 March 1998; accepted 2 June 1998 ABSTRACT: The stoichiometry of CO2 production during the ceric oxidation of various organic acids is measured under conditions with organic acid excess. Measurements utilize a photo- metric methodology. For anaerobic conditions stoichiometries [CO2]produced : [Ce(IV)]reduced of about 0 (malonic acid), 0.5 (e.g., glyoxylic acid), and 1.0 (oxalic acid) are found. Oxalic acid showed an oxygen-induced decrease of CO2 production, while other compounds such as ma- lonic acid increased the amount of produced CO2 or showed no changes (e.g., tartronic acid). In the case of mesoxalic acid the stoichiometry is increased from about 0.5 to 2.0 due to the presence of molecular oxygen. The results are discussed on the basis of simple reaction mech- anisms demonstrating that useful information on reaction pathways and intermediates can be extracted from these simple measurements. ᭧ 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 899±902, 1998 The study of oxidation of relatively low molecular and involve numerous organic acids and radicals as weight carbonic acids by metal ions has been an active intermediates [4,7]. A common characteristic, how- area of kinetics [1]. In particular the oxidation of ma- ever, is that most organic acids are oxidized to carbon lonic acid (CH2(COOH)2) and similar compounds by dioxide. -
Spectra Library Index Ichem/SDBS Raman Library
Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン S p e c t r a L i b r a r y I n d e x (Ver. 40) Ichem / SDBS Raman Library ライブラリー名:ラマンスタンダードライブラリー 商品番号:60001-40 株式会社 エス・ティ・ジャパン 〒103-0014 東京都中央区日本橋蛎殻町 1-14-10 Tel: 03-3666-2561 Fax:03-3666-2658 http://www.stjapan.co.jp 1 【販売代理店】(株)テクノサイエンス Tel:043-206-0155 Fax:043-206-0188 https://www.techno-lab-co.jp/ Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン ((1,2-DIETHYLETHYLENE)BIS(P-PHENYLENE))DIACETATE ((2-(3-BENZYLSULFONYL-4-METHYLCYCLOHEXYL)PROPYL)SULFONYLMETHYL)BENZENE ((2,4,6-TRIOXOHEXAHYDRO-5-PYRIMIDINYL)IMINO)DIACETIC ACID ((2-CARBOXYETHYL)IMINO)DIACETIC ACID ((2-HYDROXYETHYL)IMINO)DIACETIC ACID ((2-NITROBENZYL)IMINO)DIACETIC ACID ((2-SULFOETHYL)IMINO)DIACETIC ACID ((3-(1-BROMO-1-METHYLETHYL)-7-OXO-1,3,5-CYCLOHEPTATRIEN-1-YL)OXY)DIFLUOROBORANE ((N-BENZYLOXYCARBONYL-L-ISOLEUCYL)-L-PROLYL-L-PHENYLALANYL)-N(OMEGA)-NITRO-L-ARGININE 4-NITROBENZYL ESTER (-)-2-AMINO-1-BUTANOL (-)-2-AMINO-6-MERCAPTOPURINE RIBOSIDE (-)-6,8-P-MENTHADIEN-2-OL (-)-DIACETYL-L-TARTARIC ACID (-)-DIBENZOYL-L-TARTARIC ACID (-)-DI-P-ANISOYL-L-TARTARIC ACID (-)-DI-P-TOLUOYL-L-TARTARIC ACID (-)-KAURENE (-)-MENTHOL (-)-MYRTENOL (-)-N,N,N',N'-TETRAMETHYL-D-TARTARDIAMIDE (-)-N,N'-DIBENZYL-D-TARTRAMIDE (+)-1,3,3-TRIMETHYLNORBORNANE-2-ONE (+)-2-(2,4,5,7-TETRANITRO-9-FLUORENYLIDENEAMINOOXY)PROPIONIC ACID (+)-2-AMINO-1-BUTANOL (+)-2-PINENE (+)-3,9-DIBROMOCAMPHOR (+)-3-CARENE (+)-5-BROMO-2'-DEOXYURIDINE (+)-AMMONIUM 3-BROMO-8-CAMPHORSULFONATE (+)-CAMPHOR (+)-CAMPHOR OXIME (+)-CAMPHORIC ACID (+)-CATECHIN (+)-DI-P-ANISOYL-D-TARTARIC -
British Chemical Abstracts
BRITISH CHEMICAL ABSTRACTS A.-PURE CHEMISTRY SEPTEMBER, 1927. General, Physical, and Inorganic Chemistry. Symmetrical character of the terms corre 5016 Â. increases approximately linearly with the sponding with systems containing similar voltage in the range above 11 kilovolts. Intensities particles, derived by quantum dynamics. F, were measured by comparison with a standard lamp. H und (Z. Physik, 1927, 43, 788— 804).—Mathe R. W. Ltjnt. matical. ' R. W. L u n t . Ionisation potential.and the fine line spectrum Applications of Schrödinger’s theory to the of hydrogen. K. F. N i e s s e n (Z. Physik, 1927, 43, structure of spectra. E. W e i g e r (Z. Physik, 1927, 694—706).—The ionisation potential of hydrogen has 43, 624—652).—Mathematical. The characteristic been calculated by the use of half quantum numbers structure of spectra, in particular the laws of series assigned to the ion H2+ ; it is shown that some of the spectra and the Stark and Zeeman effects, have been fine-line spectrum is attributable to this ion. The derived by application of Schrödinger’s differentia] value calculated for the ionisation potential is equations. R. W. L u n t . — l-216iüA(=15 volts), in good agreement with that calculated by Burrau by wave mechanics — 1-204IÎA Orbits and light-radiation of hydrogen (=15-4 volts) (Kgl. Danske Videnskab. Selsk. math.- E n g s e t electrons. T. (Ann. Physik, 1927, [iv], 83, fys. Medd., 1927, 7, 14). R. W. L t jn t . 903—904).—Extensive mathematical corrections to a former paper (this vol., 601) are given. -
Catalytic Oxidation of Glycerol to Dihydroxyacetone
CATALYTIC OXIDATION OF GLYCEROL TO DIHYDROXYACETONE Wenbin Hu, Brian Lowry and Arvind Varma * School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA Summary Selective oxidation of glycerol to dihydroxyacetone was investigated using Pt-Bi/C bi-metallic catalyst. The catalysts with different metal loadings, supports and synthesis methods were synthesized and tested in a semi-batch reactor. The optimum catalyst was 3wt%Pt, with sequential 0.6wt%Bi impregnation on Norit Darco 20-40 mesh activated carbon, followed by NaBH 4 reduction, for reaction rate and DHA selectivity. With the optimum catalyst, the reaction conditions (temperature, pressure, pH, etc) in the semi-batch reactor were optimized, with which the maximum DHA yield of 46% was obtained at nearly full glycerol conversion. The catalysts were characterized using BET, ICP-OES, TEM, XRD and XPS techniques. Keywords Glycerol; Dihydroxyacetone; Selective Oxidation; Platinum-Bismuth catalyst Introduction Identifying new uses of glycerol, a waste of biodiesel Experimental production from transesterification of vegetable oils, is of Catalyst Synthesis great current interest. Towards this end, many value-added Pt-Bi/C catalysts with different loadings, supports, chemicals, such as propanediol, propylene, impregnation sequences and reduction methods were epichlorohydrin and methanol, have been explored by synthesized. A typical synthesis procedure is described as chemical companies. The use of glycerol to synthesize follows: activated carbon (AC) was submerged in water these chemicals, however, is less attractive due to the with sonication. A predetermined amount of chloroplatinic limited amount of value added. We use glycerol as a acid hydrate was dissolved in 1.2N HCl and added feedstock for its selective oxidation to produce high-value dropwise to the well-stirred AC slurry. -
The Role of Aqueous Aerosols in the “Glyoxylate Scenario”: an Experimental Approach Margarita R
DOI:10.1002/chem.201602195 Full Paper & Prebiotic Chemistry |Hot Paper| The Role of Aqueous Aerosols in the “Glyoxylate Scenario”: An Experimental Approach Margarita R. Marín-Yaseli, ElenaGonzµlez-Toril,Cristina Mompeµn,and Marta Ruiz- Bermejo*[a] Abstract: The origin of life is one of the fundamentalques- origin of life. The soluble andinsoluble HCN polymers syn- tions in science. Eschenmoser proposed the “glyoxylate sce- thetizedwere analyzed by GC-MS. We identified, for the first nario”, in whichplausible abiotic synthesis pathways were time, glyoxylic acid in thesepolymers, together with some suggested to be compatible with the constraints of prebiotic constituents of the reductive tricarboxylic acid cycle, amino chemistry.Inthis proposal,the stem compound is HCN. In acids and several N-heterocycles. The findings presented this work, we explore the “glyoxylate scenario” through sev- herein, asthe first globalapproachtothe “glyoxylate scenar- eral syntheses of HCN polymers, paying particularattention io”, give full effect to this hypothesis and prove that aque- to the role of the aqueous aerosols,together with statistical ous aerosols could play an important role in this plausible methods, as astep to elucidate the synthetic problem of the scene of the origin of life. Introduction organics,[6] and they are considered key in the primeval evolu- tion of protometabolism and informational systems.[7] Biogenesis can be understood as apuzzling and intriguing ret- On the other hand, the possible importance of aerosols in rosynthetic problem. One of the main challenges in solving the origin of life on Archean Earth has been emphasized in this great question of currentscience is that there are awide recentyears, and we couldassume that the bubble-aerosol- variety of uncertainties about the geochemistryofthe ancient droplet cycle (the bursting of bubbles that injectsinto the at- Earth.