Lawrence Berkeley National Laboratory Recent Work Title Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals. Permalink https://escholarship.org/uc/item/2hx5q6wq Journal The journal of physical chemistry. A, 121(31) ISSN 1089-5639 Authors Liu, Matthew J Wiegel, Aaron A Wilson, Kevin R et al. Publication Date 2017-08-01 DOI 10.1021/acs.jpca.7b04892 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1 Aerosol Fragmentation Driven by Coupling of Acid-Base and Free Radical 2 Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH 3 Radicals 4 Matthew J. Liu,a,b Aaron A. Wiegel,a Kevin R. Wilson,†a and Frances A. Houle†a 5 aLawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, USA 6 94702 7 bUniversity of California, Berkeley, Department of Chemical and Biomolecular Engineering, 8 Berkeley, CA, USA 94720 9† Authors to whom correspondence should be addressed: 10Frances A. Houle (
[email protected]) and Kevin R. Wilson (
[email protected]) 11 12Abstract 13A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) 14in aqueous phase aerosol is how the free radical reaction pathways might be altered by acid-base 15chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation 16and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in 17reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. 18To examine these questions, a kinetic model is developed for the OH initiated oxidation of citric 19acid aerosol at high relative humidity.