Omics Approaches for Conservation Biology Research on the Bivalve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lioconcha Castrensis Species Group (Bivalvia : Veneridae), with the Description of Two New Species
Molluscan Research 30(3): 117–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press The Lioconcha castrensis species group (Bivalvia : Veneridae), with the description of two new species SANCIA E.T. VAN DER MEIJ1, ROBERT G. MOOLENBEEK2 & HENK DEKKER2 1 Netherlands Centre for Biodiversity Naturalis (department of Marine Zoology), P.O. Box 9517, 2300 RA Leiden, The Nether- lands. Email: [email protected] (corresponding author) 2 Netherlands Centre for Biodiversity Naturalis (section Zoological Museum of Amsterdam), Mauritskade 57, 1092 AD Amsterdam, The Netherlands. Email: [email protected] Abstract Part of the genus Lioconcha Mörch, 1853 is reviewed. Species strongly resembling Lioconcha castrensis (Linnaeus, 1758) are discussed and two new species are described: Lioconcha arabaya n. sp. from the Northwest Indian Ocean and Lioconcha rumphii n. sp. from Thailand and Sumatra. These three species, together with Lioconcha macaulayi Lamprell & Healy, 2002, share many morphological similarities and we suspect them to be closely related. They are referred to as the Lioconcha cast- rensis species group. Furthermore, lectotypes of Venus castrensis Linnaeus, 1758, and Venus fulminea Röding, 1798, are desig- nated. The latter is considered a junior synonym of V. castrensis. Key words: Indo-Pacific, Mollusca, Persian Gulf, Red Sea, taxonomy Introduction between the anterior and posterior extremities, height is measured vertically from the umbo to the ventral margin and The delimitation within the tropical venerid genus Lioconcha total width (or inflation) is the greatest distance between the Mörch, 1853, is problematic, due to high levels of external surfaces of the paired valves. For an extensive list of intraspecific morphological variability and relatively few synonyms of figured specimens of Lioconcha castrensis we useful morphological characters (Lamprell and Healy 2002). -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Community-Defined Research Priorities
Journal Pre-proof Fundamental questions and applications of sclerochronology: Community-defined research priorities Tamara Trofimova, Stella J. Alexandroff, Madelyn Mette, Elizabeth Tray, Paul G. Butler, Steven Campana, Elizabeth Harper, Andrew L.A. Johnson, John R. Morrongiello, Melita Peharda, Bernd R. Schöne, Carin Andersson, C. Fred T. Andrus, Bryan A. Black, Meghan Burchell, Michael L. Carroll, Kristine L. DeLong, Bronwyn M. Gillanders, Peter Grønkjær, Daniel Killam, Amy L. Prendergast, David J. Reynolds, James D. Scourse, Kotaro Shirai, Julien Thébault, Clive Trueman, Niels de Winter PII: S0272-7714(20)30708-3 DOI: https://doi.org/10.1016/j.ecss.2020.106977 Reference: YECSS 106977 To appear in: Estuarine, Coastal and Shelf Science Received Date: 1 February 2020 Revised Date: 15 July 2020 Accepted Date: 4 August 2020 Please cite this article as: Trofimova, T., Alexandroff, S.J., Mette, M., Tray, E., Butler, P.G., Campana, S., Harper, E., Johnson, A.L.A., Morrongiello, J.R., Peharda, M., Schöne, B.R., Andersson, C., Andrus, C.F.T., Black, B.A., Burchell, M., Carroll, M.L., DeLong, K.L., Gillanders, B.M., Grønkjær, P., Killam, D., Prendergast, A.L., Reynolds, D.J., Scourse, J.D., Shirai, K., Thébault, J., Trueman, C., de Winter, N., Fundamental questions and applications of sclerochronology: Community-defined research priorities, Estuarine, Coastal and Shelf Science (2020), doi: https://doi.org/10.1016/j.ecss.2020.106977. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. -
Int. J. Biosci. 2018
Int. J. Biosci. 2018 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 12, No. 1, p. 82-89, 2018 RESEARCH PAPER OPEN ACCESS Describing shell shapes of Venerid bivalves using elliptic fourier analysis Mark Lloyd Dapar, Sharon Rose Tabugo* Department of Biological Sciences, College of Science and Mathematics Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Key words: Veneridae, CVA, MANOVA, Variation, Elliptic Fourier Analysis. http://dx.doi.org/10.12692/ijb/12.1.82-89 Article published on January 12, 2018 Abstract In this study, Elliptic Fourier (EF) analysis was used to describe phenotypic variation among the selected venerid bivalve species Meretrix lyrata (lyrate asiatic hard clam), Chamelea striatula (striped venus clam) and Tapes dorsatus (turgid venus clam). Thus, to describe possible phenotypic diversity, a total of 90 venerid bivalves (30 specimens for each species) were photographed on their right valves. Canonical variate analysis (CVA), multivariate analysis of variance (MANOVA), principal component analysis (PCA) and Kruskal-Wallis tests showed significant difference between species based on the Fourier coefficients. This study showed significant variations in the shape of the right external valve of the shell. CVA plot generated show separation of populations examined indicating significant difference between groups. Observed differences in the external shell shapes of different venerid bivalve species were based in the umbo, anterior margin, shell width, length depth and anterior margin depression. Results suggest hypothesized variable factors behind the disparity of the external shell shape which include habitat differences, environment and genotype interactions. Herewith, the use of Elliptic Fourier (EF) analysis proved to be useful in effective quantification of inter-specific variation between species. -
Ascendency As Ecological Indicator for Environmental Quality Assessment at the Ecosystem Level: a Case Study
Hydrobiologia (2006) 555:19–30 Ó Springer 2006 H. Queiroga, M.R. Cunha, A. Cunha, M.H. Moreira, V. Quintino, A.M. Rodrigues, J. Seroˆ dio & R.M. Warwick (eds), Marine Biodiversity: Patterns and Processes, Assessment, Threats, Management and Conservation DOI 10.1007/s10750-005-1102-8 Ascendency as ecological indicator for environmental quality assessment at the ecosystem level: a case study J. Patrı´ cio1,*, R. Ulanowicz2, M. A. Pardal1 & J. C. Marques1 1IMAR- Institute of Marine Research, Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal 2Chesapeake Biological Laboratory, Center for Environmental and Estuarine Studies, University of Maryland, Solomons, Maryland, 20688-0038, USA (*Author for correspondence: E-mail: [email protected]) Key words: network analysis, ascendency, eutrophication, estuary Abstract Previous studies have shown that when an ecosystem consists of many interacting components it becomes impossible to understand how it functions by focussing only on individual relationships. Alternatively, one can attempt to quantify system behaviour as a whole by developing ecological indicators that combine numerous environmental factors into a single value. One such holistic measure, called the system ‘ascen- dency’, arises from the analysis of networks of trophic exchanges. It deals with the joint quantification of overall system activity with the organisation of the component processes and can be used specifically to identify the occurrence of eutrophication. System ascendency analyses were applied to data over a gradient of eutrophication in a well documented small temperate intertidal estuary. Three areas were compared along the gradient, respectively, non eutrophic, intermediate eutrophic, and strongly eutrophic. Values of other measures related to the ascendency, such as the total system throughput, development capacity, and average mutual information, as well as the ascendency itself, were clearly higher in the non-eutrophic area. -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels. -
Growth and Morphometric Characteristic of the Bivalve Callista Chione Population in Timsah Lake, Suez Canal, Egypt
CATRINA (2017), 16 (1):33-42 © 2017 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Growth and Morphometric Characteristic of the Bivalve Callista chione Population in Timsah Lake, Suez Canal, Egypt Abdel-Fattah A. Ghobashy1, Mohamed H. Yassien2, Esraa E. AbouElmaaty2* 1Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt 2Invertebrates Aquaculture Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Gulfs of Suez and Aqaba branch, Attaqa, Suez, Egypt ABSTRACT This is the first attempt to study some biological aspects for the bivalve Callista chione in Egypt. The study of dimensional relationships assumes great importance in fishery biology researches. Studying the biological characteristics of C. chione is also essential for improving the state of current production and fishery management, as well as a base for introduction of its potential aquaculture. The growth of C. chione in Timsah Lake was studied in the period from June 2013 to August 2014 by the comparison of the rate of increase of one body parameter relative to that of the other parameter (allometry). The population characteristics of C. chione in Timsah Lake were studied depending on size frequency distribution to determine different age cohorts, growth parameters and mortality and exploitation rates. The results indicated that all morphometric relationships of C. chione showed a negative allometry. The length frequency analysis using FiSAT showed that C. chione population in the lake includes three age groups. The von Bertalanffy Growth Parameters; L∞, k and to, were 6.25 cm, 0.530 and -0.68 y. The growth performance index was estimated as 1.316. The natural mortality, fishing mortality and total mortality were found to be 0.5, 1.91 and 2.41 year-1. -
Review of the Literature on Bivalve Cytogenetics in the Last Ten Years
Cah. Biol. Mar. (2002) 43 : 17-26 Review of the literature on bivalve cytogenetics in the last ten years Catherine THIRIOT-QUIEVREUX Observatoire Océanologique, Université P. et M. Curie – CNRS - INSU, BP 28, 06230 Villefranche-sur-Mer, France Fax: (33) 4 93 76 38 48; E-mail: [email protected] Abstract: This paper provides a review of the studies on bivalve chromosomes since 1992, in order to gather available data and to highlight the recent progress in different fields of cytogenetics: karyotype and chromosome markers, genome size, aneuploidy, natural and induced polyploidy, and hybridization. Résumé: Revue des travaux des dix dernières années sur l’étude cytogénétique des bivalves. Cet article présente une revue sur l’étude des chromosomes des bivalves depuis 1992 afin de rassembler les données disponibles et de souligner les pro- grès récents dans les différents domaines de la cytogénétique : caryotype et marqueurs chromosomiques, taille du génome, aneuploïdie, polyploïdie naturelle et induite, et hydridisation. Keywords: Bivalvia, Chromosomes, Cytogenetics Introduction review, 1985). Later, the development of banding techniques which allowed chromosome identification in Cytogenetic studies encompass different levels of biological karyotypes began to be applied in bivalves (see Thiriot- organization ranging from the morphological to the Quiévreux review, 1994). Since these reviews, the study of molecular, depending on the applicable technology. bivalve chromosomes has greatly progressed in Chromosomes can be studied as a morphological karyological as well as molecular information, as a result of manifestation of the genome in terms of their routine application of several banding techniques and the microscopically visible size, shape, number and behaviour development of techniques for in situ hybridization. -
Monitoring of Infections by Protozoa of the Genera Nematopsis, Perkinsus
DISEASES OF AQUATIC ORGANISMS Vol. 42: 157–161, 2000 Published August 31 Dis Aquat Org NOTE Monitoring of infections by Protozoa of the genera Nematopsis, Perkinsus and Porospora in the smooth venus clam Callista chione from the North-Western Adriatic Sea (Italy) G. Canestri-Trotti1,*, E. M. Baccarani1, F. Paesanti2, E. Turolla2 1Dipartimento di Biologia Animale e dell’Uomo, Università degli Studi di Torino, Via Accademia Albertina, 17, 10123 Torino, Italy 2Goro Acquicoltura s.r.l., P. le Leo Scarpa, 45, 44020 Goro (Ferrara), Italy ABSTRACT: Marketable smooth venus clams Callista chione size (50 to 65 mm) were collected for a total of 375 from natural banks of Chioggia (Venice) and Goro (Ferrara), specimens (aged 4 to 6 yr after Marano et al. 1998): North-Western Adriatic Sea (Italy), were examined for proto- 357 specimens from Chioggia (Venice) and 18 speci- zoan parasites from November 1996 to November 1998. Out 2 of the 375 bivalves examined, 149 (39.7%) were infected by mens from Goro (Ferrara) (Table 1). Sections (1 cm ) of Nematopsis sp. and 325 (86.7%) by Porospora sp. Oocysts of gill, mantle and foot tissues were squashed between Nematopsis sp. were present with a prevalence that varied glass slides and examined for the presence of Nema- from 100% in November 1996 to 5% in June 1998; cystic and topsis (Apicomplexa: Porosporidae) oocysts and Poro- naked sporozoites of Porospora sp. were very common, with a prevalence of 100%. Out of the 229 bivalves examined spora (Apicomplexa: Porosporidae) sporozoites (Bower between January and November 1998, 63 (27.5%) were also et al. -
Chamelea Gallina in the Coastal Waters of the Anapa Bay
Oceanologia (2019) 61, 471—483 Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE Chamelea gallina in the coastal waters of the Anapa bay bar (the Black Sea) as a carbonate sediment producer a, b Alisa R. Kosyan *, Boris V. Divinsky a A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia b P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Received 22 October 2018; accepted 26 April 2019 Available online 16 May 2019 KEYWORDS Summary The paper presents preliminary results of monitoring the population of the bivalve Population; Chamelea gallina, which is the main source of biogenic carbonates for the Anapa bay bar beaches Biomass; (the Black Sea). It is shown that by 2017, the biomass of the clams decreased more than twice compared to 2010, but began to increase in 2018. The average sizes of C. gallina are clearly Shell length; Age; divided in terms “year” — “section” — “age”. At the same time, interannual variations of the average size are very strong in all age groups. The average shell length of C. gallina significantly Rapana venosa; increased in 2018 compared to 2016, and especially — to 2017. This may be caused by the Black Sea population decline of the predator Rapana venosa feeding on clams. Geographic differences in the shell length between sections are not directly related to the distribution of biogenic elements (nitrogen and phosphorus). The differences in longevity and shell size between C. gallina from the Anapa region and distant populations from the other parts of the distribution area are likely related to its significant negative correlation with the growth rate, which in turn negatively correlates with latitude. -
Decapoda, Brachyura
APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr. -
Alien Species in the Mediterranean Sea by 2010
Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.